天然气地球科学, 2020, 31(4): 498-506 doi: 10.11764/j.issn.1672-1926.2019.11.013

天然气地质学

四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集

周国晓,, 魏国齐,, 胡国艺, 武赛军, 田亚杰, 董才源

中国石油勘探开发研究院,北京 100083

The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin

ZHOU Guo-xiao,, WEI Guo-qi,, HU Guo-yi, WU Sai-jun, TIAN Ya-jie, DONG Cai-yuan

Research Institute of Petroleum Exploration and Development, Beijing 100083, China

通讯作者: 魏国齐(1964),男,河北乐亭人,教授级高级工程师,博士,主要从事天然气地质研究.E-mail:weigq@petrochina.com.cn.

收稿日期: 2019-09-12   修回日期: 2019-11-27   网络出版日期: 2020-04-26

基金资助: 国家科技重大专项课题“高过成熟天然气生成机理与源灶有效性评价”.  2016ZX05007-001

Received: 2019-09-12   Revised: 2019-11-27   Online: 2020-04-26

作者简介 About authors

周国晓(1991-),男,山西万荣人,博士研究生,主要从事天然气地质与地球化学研究.E-mail:zhou_guoxiao@163.com. , E-mail:zhou_guoxiao@163.com

摘要

四川盆地绵竹—长宁裂陷槽内部发育潜力巨大的下寒武统烃源岩。对位于裂陷槽西部中央的错巴沟剖面下寒武统页岩开展了总有机碳(TOC)、矿物组成和主、微量元素测试,以揭示其发育时期的构造背景、陆源输入、古气候、初级生产力、水体氧化还原条件与热液活动等与有机质富集之间的关系。结果表明研究区主要处于被动大陆边缘沉积环境,具有较稳定的沉积速率,气候温暖湿润,存在间歇性气候变冷。TOC值分布在5.96%~23.15%之间,平均含量为11.64%。营养元素P、Ba、Cu和Ni等揭示了该时期高的初级生产力,这是因为温暖湿润的气候加剧了化学风化,从而向海洋输入大量的营养物质导致的。氧化还原敏感元素指标与黄铁矿含量说明研究区Ⅱ段、Ⅲ段富有机质沉积物主要发育于厌氧硫化的底水环境。下寒武统异常富集的微量金属元素可能与早寒武世裂陷槽拉张背景下的海底热液活动有关,其不仅可促进化能自养型生物的发育,同时与海水混合后有利于底水厌氧硫化环境的形成,促进有机质的保存。

关键词: 有机质富集 ; 下寒武统 ; 裂陷槽 ; 四川盆地

Abstract

The Mianzhu-Changning rift trough has great potential for the development of the Lower Cambrian source rock. Total organic carbon (TOC), mineral composition, major and trace elements of the Lower Cambrian shales in the central part of the rift trough were measured to reveal the relationship between the tectonic setting, terrigenous input, paleoclimate, primary productivity, redox conditions as well as the hydrothermal activity and the enrichment of organic matter during its development period. The results show that the study area is located in the passive continental margin sedimentary environment, with stable sedimentary rate, warm and humid climate alternated by intermittent climate cooling. The TOC values range from 5.96% to 23.15% with an average content of 11.64%. Nutrient elements of P, Ba, Cu and Ni reveal the high primary productivity during this period, which is due to the increased chemical weathering caused by warm and humid climate, thus importing large amounts of nutrients into the ocean. The index of redox sensitive elements and the content of pyrite indicate that the organic-rich sediments in the second and third stages are mainly developed in the bottom water environment of anaerobic sulfurization. The abnormal enrichment of trace metals may be related to the hydrothermal activity from the seabed under the stretching background in rift during the Early Cambrian, which not only provides material for the flourishing of anaerobic chemoautotrophs, but also facilitates the formation of anaerobic sulfurization environment in the bottom water and promotes the preservation of organic matter after mixing with seawater.

Keywords: Accumulation of organic matter ; Early Cambrian ; Inter-platform rift ; Sichuan Basin

PDF (2656KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集. 天然气地球科学[J], 2020, 31(4): 498-506 doi:10.11764/j.issn.1672-1926.2019.11.013

ZHOU Guo-xiao, WEI Guo-qi, HU Guo-yi, WU Sai-jun, TIAN Ya-jie, DONG Cai-yuan. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin. Natural Gas Geoscience[J], 2020, 31(4): 498-506 doi:10.11764/j.issn.1672-1926.2019.11.013

0 引言

关于有机物的富集机理,前人已经提出的影响因素包括底水缺氧的保存条件[1,2,3,4,5]、海洋表层高的初级生产力[6,7]、温暖湿润的古气候[8,9]、陆源细粒碎屑的沉积速率[2,10]、火山活动[11,12]、上升流和海底热液活动[4,13]等。另外,沉积后作用,例如细菌硫酸盐还原反应,对有机物保存也具有重要作用。

华南扬子地区下寒武统富有机质沉积不仅可作为有效的烃源岩,而且记录了关键时期丰富的地质历史,包括生物演化、古气候和海洋环境变化的全球事件。之前的研究主要集中在海洋氧化还原条件变化与生物演化之间的关系,研究区域主要集中在下寒武统出露良好的贵州省和湖南省,而对于位于扬子地台西北方向的四川盆地,由于中生代沉积的广泛覆盖而缺少系统的研究[14]。另外,对于这一关键时期有机物的富集机理,尤其对裂陷槽中具有异常高有机碳的页岩[15,16],并未得到过多的关注。华南早寒武世普遍存在热液活动[4,17],在下寒武统底部发现热液来源的硫化镍钼矿床[18,19]和硅质岩[20]。同时,贵州牛蹄塘组底部As、Sb元素异常富集和正Eu异常也被认为与热水沉积作用有关[21]。而在裂陷槽内部拉张的构造背景下是否也存在丰富的热液活动,其对有机质富集的影响如何,还需进一步研究。

因此,本文以四川盆地早寒武世裂陷槽中异常高有机碳的页岩为研究对象,通过页岩总有机碳和主、微量元素含量之间的耦合关系,以期阐明其特殊的沉积环境与有机质富集机理。

1 地质背景

在震旦纪—寒武纪过渡时期,大约800 Ma前,扬子地台从扬子与华夏陆块之间的裂谷演化而来。扬子地台晚震旦世灯影末期古地理通常从西北向东南方向划分为浅水碳酸盐台地、过渡带和深水盆地相[17,19]。而近期在上扬子四川盆地内部绵竹—长宁地区发现了晚震旦世—早寒武世克拉通内裂陷,该裂陷槽是在拉张背景下形成的[22,23]。由于下寒武统梅树村组—筇竹寺组沉积期为裂陷发展阶段,因此在裂陷槽内部充填了巨厚的深水陆棚相泥质岩[24]。本文研究区为错巴沟剖面,前人在该地区将目标层段命名为麦地坪组和筇竹寺组,主要由黑色薄层状富有机质页岩组成(图1)。错巴沟剖面麦地坪组底部与上震旦统灯影组硅质白云岩平行不整合接触,与上覆的筇竹寺组为连续沉积,未见筇竹寺组顶部。

图1

图1   四川盆地早寒武世岩相古地理(a)(据文献[24]修改)和错巴沟剖面(b)

Fig.1   Lithofacies palaeogeography of the Sichuan Basin during the Early Cambrian(a)(modified from Ref.[24]) and the Cuobagou section(b)


2 样品与分析方法

本文22个页岩样品采自四川省绵阳市高川乡错巴沟剖面 (31°38′16″ N, 104°10′51″ E)(图1)。为确保取样点能够反映古海洋环境的连续变化规律,取样间隔控制在1 m左右。同时,为保证样品测试结果能够反映其原始信息,在采样之前,需剥离去除取样点约20 cm的风化表层。取样之后,将样品密封保存以防污染。

新鲜样品用玛瑙研钵磨至200目,并在70 ℃干燥24 h。粉末样品被分为数份,分别用于TOC含量、XRD和主、微量元素分析。①首先用15%盐酸溶液(HCl)对50~80 mg粉末样品在60 ℃消解24 h以去除碳酸盐矿物,随后用去离子水反复冲洗无碳酸盐部分直至中性,干燥后用LECO CS-400分析仪进行TOC含量和总硫(TS)含量的分析,测试过程依据国标GB/T19145—2003(沉积岩中总有机碳的测定)。②X-射线荧光光谱仪(Axios,Netherlands)用于测量选定的主量和微量元素,误差分别小于5%和10%,以国标GB/T14506.28—93(硅酸盐岩石化学分析方法X-射线荧光光谱法)为依据,多次用国际标样和重复测试单个样品保证仪器的稳定与结果的准确性。③用氢氯酸和氢氟酸去除粉末全岩样品中的无机基质,然后用重液分离的方法获得干酪根。用稳定同位素质谱仪MAT-253测干酪根的碳同位素组成,测试结果按VPDB标准计算,误差范围为±0.5‰。

主量元素相关参数应用于图2中,TOC、干酪根碳同位素见图3,微量元素特征见图2图3

图2

图2   下寒武统页岩的(a)沉积构造背景、(b)化学组成变化三角图和(c) Ga/Rb与K2O/Al2O3关系[(a)据文献[2]、(b)据文献[32]、(c)据文献[29]修改]

Fig.2   Sedimentary tectonic setting (a), (b) the triangle map of chemical composition (b) and Ga/Rb Vs. K2O/Al2O3 of the Lower Cambrian shales (revised Separately from Refs.[2], [32] and [29])


图3

图3   错巴沟剖面下寒武统页岩地球化学特征

Fig.3   Geochemical characteristics of Lower Cambrian shales in the Cuobagou section


3 讨论

成分变化指数(ICV)可判断碎屑岩的原始成分是属于初始沉积物还是沉积再循环的产物[25]。错巴沟剖面的ICV均值为1.6,大于1,说明研究区泥质岩为第一次沉积的产物。因此,可用于沉积背景的判识。

3.1 构造环境与碎屑输入

SiO2—Lg (K2O/Na2O) 判识图解可揭示沉积岩的古构造环境[26]。研究区样品主要分布在被动大陆边缘区域,表明研究区在早寒武世处于相对稳定的构造背景[图2(a)] 。Al2O3/(Al2O3+Fe2O3)值分布在0.499~0.885之间,平均值为0.740,也属于大陆边缘环境的范畴。晚震旦世—早寒武世上扬子地区是位于冈瓦纳大陆北缘的被动大陆边缘盆地[27],表明上述结论是可靠的。

泥页岩的Ti/Al值可用作陆源碎屑矿物颗粒指数而且可以指示沉积速率[28],较高的Ti/Al值指示粗碎屑颗粒供应充足、沉积速率大。研究区Ti/Al值除在第Ⅲ段存在波动外,大部分分布在平均值0.048附近(图3),表明一个稳定的沉积速率。在第Ⅲ段中2个高的Ti/Al值对应低CIA值(60~70),源区此时干冷的气候导致物源区化学风化减弱,以物理风化作用为主,剥蚀、搬运和沉积过程中粗碎屑成分较多,沉积速率略高;相反地是,在Ⅱ段和Ⅲ段的中部均存在一个Ti/Al最小值,分别与该段的高CIA值对应[图2(b)],说明在温暖湿润气候下强烈的化学风化和大量淡水的长期搬运导致碎屑颗粒变细、沉积速率变缓,水动力较弱,有利于有机物的富集。因为过高的沉积速率将会稀释有机物丰度, Ti/Al值与TOC值之间弱的相关性 (R2=0.03) 表明这种情况在研究区并没有发生,也说明研究区可能处于离物源区距离较远、陆源输入较稳定的外陆棚环境。岩相古地理研究结果也表明研究区在早寒武世属于深水陆棚相(图1[24]

3.2 古气候条件

K2O/Al2O3值与Ga/Rb值被应用于古地层中的气候和风化程度的恢复[29]。将页岩样品投入图版中发现研究层段主要发育于温暖湿润的气候条件下,偶有气候变冷发生[图2(c)],与上述陆源输入分析结果一致。在稳定的构造背景下,化学蚀变指数(CIA)可用于重建沉积时的古气候并且可以反映物源区源岩化学风化程度[30]。本研究中样品的CIA值分布在62.6~99.7之间,平均值为78.6,高于平均页岩的CIA值(70~75)[31],也反映出温暖湿润的气候条件与中等程度的化学风化。古地磁研究表明,华南地块位于北纬20°的位置[33];其中,扬子地块西缘(研究区)距离赤道最近。通过硅质岩硅同位素和石盐包裹体进行古温度恢复,新元古代末期温度高达40 ℃[27]

另外,气候条件在水体盐度上也存在响应。Sr/Ba值与古盐度之间存在正相关性[34]。下寒武统页岩Sr/Ba值主要分布在0.004~0.156之间。相对低值反映了其沉积于低盐度的水体,陆源淡水供应充足。在富有机质页岩的沉积过程中,淡水输入将带来大量的铝硅酸盐碎屑物质和溶解的营养元素[7]。淡水输入同时也将增强水体的分层效应,富营养化的表层海水有利于浮游生物的繁殖,缺氧的底水则有利于有机质的保存。这些结果与晚震旦世—早寒武世扬子地台处于中—低纬度的结果相一致[35]

3.3 海洋氧化还原条件

研究层段岩性为黑色薄层富有机质页岩,原生沉积构造的良好保存指示了缺氧或贫氧环境[图4(a)];同时,在Ⅱ段和Ⅲ段页岩的矿物组成中发现了大量原生的球粒状黄铁矿[图4(b)],可推测其发育环境多为缺氧环境。从总有机碳(TOC)与总硫(TS)含量之间的相关性(R2=0.36)表明在缺氧条件下不仅有利于有机质的保存[图5(a)],而且为硫酸盐还原细菌的活动提供了能量和环境,消耗有机物而产生H2S,其与海水中的活性铁反应生成黄铁矿。另外,黄铁矿硫同位素与干酪根有机硫同位素呈较高正相关性[图5(b)],说明其主要属于原生成因,可指示其沉积环境的还原性。

图4

图4   9号页岩样品中的页理构造(a)和层状分布的球粒状黄铁矿(b)

Fig.4   laminated structures of shale (a) and strawberry pyrites distributed in layers (b) from No.9 sample


图5

图5   页岩中硫的来源(胡国艺.私人通信,2019.)

(a) TOCTS含量关系 (b) 黄铁矿与干酪根硫同位素分布

Fig.5   The source of sulfur in shales


在缺氧环境中,钒与TOC含量存在良好的相关性;然而,这种良好的相关性在厌氧硫化环境下将会消失[36]。本文中钒与铝的相关系数为0.57,说明部分钒来自于陆源碎屑物质。V/Al值与TOC之间的相关性仅为0.08,表明其沉积环境多为缺氧硫化环境。分别用V/Cr>4.25和V/(V+Ni)>0.60的临界值来判识缺氧环境[37],V/(V+Ni)(≥0.84)值揭示有硫化氢存在的厌氧环境[38]。研究层段V/Cr值和V/(V+Ni)值分布区间分别为1.20~8.98和0.84~0.97,对应平均值为5.66与0.90,反映整体上为厌氧硫化环境。

在V/Cr剖面上可发现,Ⅱ段和Ⅲ段缺氧程度更为严重,这种结果与黄铁矿纵向上的变化趋势相一致。另外,发现TOC与V/C值等氧化还原指标的耦合性要优于古生产力指标(图3),说明底部水体的还原性对有机质的富集更为重要。尤其是在剖面Ⅳ段和Ⅰ段更为显著,在Ⅳ段P/Al值、Cu/Al值和Ni/Al值3个参数都反映出较高的初级生产力水平,但是相对应的TOC含量却较低;在Ⅰ段初级生产力水平向上逐步增加,但TOC高值却出现在该段的中间位置,初级生产力与TOC在这两段存在的异常可从V/Cr值所分别揭示的次氧(Ⅳ)和缺氧(Ⅰ)的保存环境得到答案。这说明如果底水中氧含量较高时,生物残体在水体沉降过程中将逐渐被氧化而无法很好地保存下来。

3.4 古生产力

磷是生物体组成中的基础元素[39]。沉积物中来源于陆源碎屑的磷所占的比例小于总磷的20%[40],为了消除陆源碎屑的影响,P/Al值或P/Ti值更能真实地反映古海洋初级生产力。研究层段P含量分布在(126~2 394)×10-6之间,平均为760×10-6。在底部Ⅰ段磷含量是最低的,之后突然增加;距底10 m以上的层段磷含量是相对稳定的,在1 000×10-6附近波动。P/Ti值分布在0.07~1.24之间,平均值为0.51,大于后太古代澳大利亚页岩(PAAS)的 0.13与Ubara远洋黏土的0.33[41],但远低于现代赤道太平洋的P/Ti值(2~8)[42]。另外,P/Ti值与TOC之间基本没有相关性(R2=0.000 2),这可能是缺氧底水与孔隙水环境将会导致磷从有机物中析出并在海水中滞留的影响[23]

同理,P、Ba、Cu和Ni 4种营养元素在陆源碎屑Al的校正后对比发现[43],在最底部Ⅰ段的范围内,初级生产力水平逐步提高,但是TOC最高值却对应中间的中等生产力,而与V/Cr值反映的缺氧条件更为相关。在Ⅱ段和Ⅲ段,生产力水平波动较大,可能是在缺氧的环境下,涉及的生物化学过程较为复杂,影响营养元素富集因素较多。总体而言,生产力水平最低值处于Ⅱ段和Ⅲ段分界处,其上下均存在一个峰值。在顶部Ⅳ段内,中间的生产力水平很高,但是并不对应TOC高值,可能与不利于有机质保存的次氧化水体环境有关。

3.5 海底热液活动

错巴沟剖面黑色页岩异常富集V、As、Cr和Ni元素,研究层段平均含量分别是上地壳平均含量的36、28、13和10倍。在邻区贵州地区牛蹄塘组底部As、Sb元素异常富集也被认为与热水沉积有关[44]。另外,华南上二叠统煤田中高含量的V、Cr、Co和Ni以及鄂西上二叠统富有机质硅质岩中V、Cr、Mo和U的异常富集被认为来源于海底喷流[45,46]。研究区在早寒武世发生大规模的海侵,同时,拉张的构造背景造成裂陷槽底部断裂活动,富金属元素的深部热液物质上涌与海水混合,使得在寒武系底部磷块岩[47]和黑色页岩层段异常富集以上微量金属元素。

热液活动会提高热液喷口区域的生物量及生物活动强度[48],同时提供大量NO3-、PO43-、NH4+等营养盐类和Fe、Mn、Zn、Co和Cu等微量金属元素[49]。在热液参与背景下的生物生产率与海底热液的通量存在正相关[50]。在贵州遵义松林寒武系底部发现了与现代海底热水生物特征相似的生物群[51]。错巴沟剖面干酪根碳同位素值分布在-38.3~-36.9‰之间,平均值为-37.7‰。与裂陷槽内的其他剖面或井资料相比[14,16,24],其干酪根碳同位素组成最轻。δ13Ccarb-δ13Corg的差值△δ13C值大于32‰可指示还原水体中化能自养型生物的参与[52]。地质历史中重的海相碳酸盐岩的碳同位素值分布在-3‰~2‰之间[53],即使早寒武世沉积碳酸盐的碳同位素值按-3‰计算,研究区△δ13Corg值仍然分布在35.3%~33‰之间,均大于32‰,说明研究区在早寒武世有机质中存在化能自养型生物的输入。

热液活动有利于增强底水的还原性程度和沉积有机物的富集。海底热液活动携带金属离子(Ni2+、Fe2+、As3+等)和还原性气体H2S等,促进底水厌氧硫化环境的形成,为下寒武统页岩提供保存条件,有利于富有机质页岩的形成[54],从而进一步控制TOC含量和页岩的含气量[4]。在现代东太平洋热液活动的洋中脊附近,其沉积物一般富集铁、锰而相对匮乏铝、钛等元素[55],因此Al/(Al+Fe+Mn)值和(Fe+Mn)/Ti值随时代的变化是辨识沉积物受热液影响的重要指标。在图6中反映热液活动强度的指标(Fe+Mn)/Ti的高值区明显与TOC含量高的层段相对应,说明早寒武世热液活动有利于有机质的富集。

图6

图6   早寒武世裂陷槽中热液活动强度与有机质富集之间的关系

Fig.6   The relationship between the intensity of hydrothermal activity and the enrichment of organic matter in rift during the early Cambrian


4 结论

基于一系列的地球化学分析,对位于上扬子地区四川盆地裂陷槽中的下寒武统烃源岩的富集机理进行讨论,结果如下:

(1) 裂陷槽中富有机质页岩的TOC含量分布在5.96%~23.15%之间,平均含量为11.64%。氧化还原敏感元素指标和黄铁矿含量表明沉积物主要发育于厌氧硫化的底水环境。湿润气候下的大量淡水输入、较高的初级生产力和海底热液喷流共同作用下导致海水分层并且使得底水严重缺氧至硫化还原环境。

(2) 初级生产力指标揭示了沉积期较高的初级生产力。温暖湿润的气候增强了物源区的化学风化作用,因此,大量的细粒碎屑物质和溶解的营养元素进入海洋促进表层浮游生物的繁盛。

(3)在四川盆地早寒武世裂陷槽西部拉张背景下海底热液喷流不仅可提供营养元素,促进洋底厌氧环境中化能自养生物的发育;而且还会增强底水的还原条件,有利于有机物的保存。

参考文献

MORT H, JACQUAT O, ADATTE T, et al.

The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation

[J]. Cretaceous Research, 2007,28:597-612.

[本文引用: 1]

HUANG B J, TIAN H, WILKINS R W T, et al.

Geochemical characteristics, palaeoenvironment and formation model of Eocene organic-rich shales in the Beibuwan Basin, South China Sea

[J]. Marine and Petroleum Geology, 2013,48:77-89.

[本文引用: 3]

ZENG S Q, WANG J, FU X G, et al.

Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China

[J]. Marine and Petroleum Geology,2015, 64:203-221.

[本文引用: 1]

ZHANG K, JIANG Z X, YIN L S, et al.

Controlling functions of hydrothermal activity to shale gas content:Taking Lower Cambrian in Xiuwu Basin as an example

[J]. Marine and Petroleum Geology, 2017,85:177-193.

[本文引用: 4]

WEI H Y, JIANG, X C.

Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China

[J]. Journal of Petroleum Science and Engineering, 2019,178: 162-179.

[本文引用: 1]

WEI H Y, CHEN D Z, WANG J G,et al.

Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012353:73-86.

[本文引用: 1]

FU X G, TAN F W, FENG X L,et al.

Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys

[J]. International Geology Review,2014, 56:1450-1465.

[本文引用: 2]

付修根,王剑,汪正江,.

藏北羌塘盆地海相油页岩沉积环境

[J].新疆石油地质, 2007,28(5):529-533.

[本文引用: 1]

FU X G, WANG J, WANG Z J, et al.

Marine oil shale depositional environment of the Qiangtang Basin in northern Tibet

[J]. Xinjiang Petroleum Geology,2007,28(5):529-533.

[本文引用: 1]

FU X G, WANG J, ZENG S Q, et al.

Continental weathering and palaeoclimatic changes through the onset of the Early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2017,487:241-250.

[本文引用: 1]

WU J, LIANG C, HU Z Q, et al.

Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin

[J]. Marine and Petroleum Geology,2019,101:556-565.

[本文引用: 1]

YAN D T, WANG H, FU Q L, et al.

Organic matter accumulation of Late Ordovician sediments in North Guizhou Province, China: Sulfur isotope and trace element evidences

[J]. Marine and Petroleum Geology,2015, 59:348-358.

[本文引用: 1]

吴蓝宇, 陆永潮, 蒋恕, .

上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响

[J].石油勘探与开发,2018, 45(5): 806-816.

[本文引用: 1]

WU L Y, LU Y C, JIANG S, et al.

Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China

[J].Petroleum Exploration and Development, 2018,45(5):806-816.

[本文引用: 1]

ZHANG K, LI Z, JIANG S, et al.

Comparative analysis of the siliceous source and organic matter enrichment mechanism of the Upper Ordovician-Lower Silurian shale in the upper-lower Yangtze area

[J]. Minerals,2018, 8:283.

[本文引用: 1]

WANG S F, ZOU C N, DONG D Z, et al.

Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence

[J]. Marine and Petroleum Geology,2015, 66:660-672.

[本文引用: 2]

YEASMIN R, CHEN D Z, FU Y, et al.

Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China

[J]. Journal of Asian Earth Sciences,2017, 134: 365-386.

[本文引用: 1]

夏国栋冉波刘树根.

绵阳—长宁拉张槽北段麦地坪组烃源岩特征——以绵竹清平剖面为例

[J].成都理工大学学报:自然科学版,2018,45(1):14-26.

[本文引用: 2]

XIA G D, RAN B, LIU S G, et al.

Characteristics of hydrocarbon source rocks of the Lower Cambrian Maidiping Formation in northern Mianyang-Changning intracratonic sag, Sichuan, China

[J]. Journal of Chengdu University of Technology :Science & Technology Edition,2018,45(1):14-26.

[本文引用: 2]

CHEN D Z, WANG J G, QING H R, et al.

Hydrothermal venting activities in the Earth Cambrian, South China: Petrological, geochronological and stable isotopic constraints

[J]. Che-mical Geology, 2009,258: 168-181.

[本文引用: 2]

JIANG S Y, YANG J H, LING H F, et al.

Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254: 217-228.

[本文引用: 1]

STEINER M, WALLIS E, ERDTMANN B D, et al.

Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 169165-191.

[本文引用: 2]

LIU Z, ZHUANG X, TENG G, et al.

The Lower Cambrian Niutitang Formation at Yangtiao (Guizhou, SW China): Organic matter enrichment, source rock potential, and hydrothermal influences

[J]. Journal of Petroleum Geology,2015, 38: 411-432.

[本文引用: 1]

李娟于炳松郭峰.

黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析

[J]. 沉积学报,2013,31(1):20-31.

[本文引用: 1]

LI J, YU B S, GUO F.

Depositional setting and tectonic background analysis on Lower Cambrian black shales in the north of Guizhou Province

[J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31.

[本文引用: 1]

魏国齐, 杨威, 杜金虎, . 2015.

四川盆地震旦纪—早寒武世克拉通内裂陷地质特征

[J]. 天然气工业,2015, 35(1): 24-35.

[本文引用: 1]

WEI G Q, YANG W, DU J H, et al.

Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin

[J]. Natural Gas Industry, 2015,35(1): 24-35.

[本文引用: 1]

魏国齐, 杨威, 张健, .

四川盆地中部前震旦系裂谷及对上覆地层成藏的控制

[J].石油勘探与开发,2018,45(2): 179-189.

[本文引用: 2]

WEI G Q, YANG W, ZHANG J, et al.

The pre-Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata

[J]. Petroleum Exploration and Development, 2018,45(2): 179-189.

[本文引用: 2]

王玉满王淑芳李新景.

四川盆地筇竹寺组富有机质页岩沉积主控因素

[J].天然气工业,2017,37(S1):1-10.

[本文引用: 4]

WANG Y M, WANG S F, LI X J, et al.

Main controlling factors of the organic shale deposition in the Qiongzhusi Formation, Sichuan Basin

[J]. Natural Gas Industry, 2017,37(S1): 1-10.

[本文引用: 4]

COX R, LOWE D R, CULLERS R L.

The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States

[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.

[本文引用: 1]

ROSER B P, KORSCH R J.

Determination of tectonic setting of sandstone-mudstone suites using content and ratio

[J]. The Journal of Geology,1986,94: 635-650.

[本文引用: 1]

王立成刘成林张华.

华南地块震旦纪晚期—早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析

[J]. 地球科学,2013,34(5):585-593.

[本文引用: 2]

WANG L C, LIU C L, ZHANG H.

Tectonic and sedimentary settings of evaporites in the Dengying Formation, South China Block: Implication for the potential of potash formation

[J]. Acta Geoscientica Sinica,2013,34(5):585-593.

[本文引用: 2]

CALVERT S, PEDERSEN T.

Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record

[J]. Marine Geology,1993, 113: 67-88.

[本文引用: 1]

ROY D K, ROSER B P.

Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir Basin, Bangladesh

[J]. Gondwana Research, 2013, 23: 1163-1171.

[本文引用: 2]

YAN D, CHEN D, WANG Q, et al.

Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China

[J]. Geology,2010, 38: 599-602.

[本文引用: 1]

YOUNG G M, WAYNE N H.

Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic),Ontario,Canada: A chemostratigraphic approach

[J].The Geological Society of America,1999,111(2):264-274.

[本文引用: 1]

DONER Z, KUMRAL M, DEMIREL I, et al.

Geochemical characteristics of the Silurian shales from the central tautides, southern Turkey: Organic matter accumulation, preservation and depositional environment modeling

[J]. Marine and Petroleum Geology,2019,102:155-175.

[本文引用: 1]

YANG Z Y, SUN Z M, YANG T S, et al.

A long connection (750-380Ma) between South China and Australia: Paleomagnetic constrains

[J]. Earth and Planetary Science Letters, 2004,220:423-434.

[本文引用: 1]

ADEGOKE A K, ABDULLAH W H, HAKIMI M H, et al.

Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions

[J]. Journal of Petroleum Science and Engineering, 2015,135:73-87.

[本文引用: 1]

LI Z X, BOGDANOVA S V, COLLINS A S, et al.

Assembly, configuration, and break-up history of Rodinia: A synthesis

[J]. Precambrian Research,2008, 160: 179-210.

[本文引用: 1]

ALGEO T J, MAYNARD J B.

Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems

[J]. Chemical Geology,2004,206: 289-318.

[本文引用: 1]

ROSS D J K, BUSTIN R M.

Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian sedimentary basin

[J]. Chemical Geology,2009,260: 1-19.

[本文引用: 1]

HATCH J R, LEVENTHAL J S.

Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A

[J]. Chemical Geology,1992, 99: 65-82.

[本文引用: 1]

TRIBOVILLARD N, ALGEO T J, LYONS T, et al.

Trace metals as paleoredox and paleoproductivity proxies: An update

[J]. Chemical Geology,2006, 232: 12-32.

[本文引用: 1]

SCHENAU S J, REICHART G J, DE LANGE G J.

Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments

[J]. Geochimica et Cosmochimica Acta,2005,69(4): 919-931.

[本文引用: 1]

ALGEO T J, KUWAHARA K, SANO H, et al.

Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean

[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308:65-83.

[本文引用: 1]

MURRAY R, LEINEN M, ISERN A R.

Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods

[J]. Paleoceanography, 1993, 8: 651-670.

[本文引用: 1]

DEAN W E, GARDNER J V, PIPER D Z.

Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin

[J]. Geochimica et Cosmochimica Acta,1997,61:4507-4518.

[本文引用: 1]

贾智彬侯读杰孙德强.

贵州地区牛蹄塘组底部烃源岩地球化学特征

[J]. 天然气地球科学,2018,29(7):1031-1041.

[本文引用: 1]

JIA Z B, HOU D J, SUN D Q, et al.

Geochemical characteristics of source rocks in the Lower Cambrian Niutitang Formation, Guizhou Province

[J]. Natural Gas Geoscience,2018,29(7): 1031-1041.

[本文引用: 1]

DAI S F, ZHANG W G, WARD C R, et al.

Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China:Influences of terrigenous materials and hydrothermal fluids

[J]. International Journal of Coal Geology, 2013, 105:60-84.

[本文引用: 1]

WANG X B, TANG Y G, JIANG Y F, et al.

Mineralogy and geochemistry of an organic- and V-Cr-Mo-U-rich siliceous rock of Late Permian age, western Hubei Province, China

[J]. International Journal of Coal Geology, 2017,172:19-30.

[本文引用: 1]

ZHAI L N, WU C D, YE Y T, et al.

Fluctuations in chemical weathering on the Yangtze block during the Ediacaran-Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017,490:280-292.

[本文引用: 1]

HALBACH M, KOSCHINESKY A, HALBACH P.

Report on the discovery of Gallionella ferruginea from an active hydrothermal field in the deep sea

[J]. InterRidge News,2001,10:18-20.

[本文引用: 1]

刘佳宜刘全有朱东亚.

深部流体在富有机质烃源岩形成重的作用

[J].天然气地球科学,2018,29(2):168-177.

[本文引用: 1]

LIU J Y, LIU Q Y, ZHU D Y, et al.

The role of deep fluid in the formation of organic-rich source rocks

[J]. Natural Gas Geoscience,2018,29(2):168-177.

[本文引用: 1]

SOJO V, HERSCHY B, WHICHER A, et al.

The origin of life in alkaline hydrothermal vents

[J].Astrobiology, 2016,16(2):181-197.

[本文引用: 1]

杨瑞东,朱立军,高慧,.

贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征

[J].地质论评,2005,51(5):481-492.

[本文引用: 1]

YANG R D, ZHU L J, GAO H, et al.

A study on characteristics of the hydrothermal vent and relating biota at the Cambrian bottom in Songlin, Zunyi County, Guizhou Province

[J]. Geological Review,2005,51(5):481-492.

[本文引用: 1]

GOLDBERG T, STRAUSS H, GUO Q, et al.

Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254: 175-193.

[本文引用: 1]

SCHIDLOWSKI M.

Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept

[J]. Precambrian Research,2001, 106:117-134.

[本文引用: 1]

赵建华, 金之钧, 林畅松,.

上扬子地区下寒武统筇竹寺组页岩沉积环境

[J].石油与天然气地质,2019,40(4):701-715.

[本文引用: 1]

ZHAO J H, JIN Z J, LIN C S, et al.

Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region

[J]. Oil & Gas Geology,2019,40(4):701-715.

[本文引用: 1]

BOSTRÖM K, PETERSON M.

The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise

[J]. Marine Geology,1969,7:427-447.

[本文引用: 1]

/