天然气地球科学 ›› 2020, Vol. 31 ›› Issue (4): 498–506.doi: 10.11764/j.issn.1672-1926.2019.11.013

• 天然气地质学 • 上一篇    下一篇

四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集

周国晓(),魏国齐(),胡国艺,武赛军,田亚杰,董才源   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2019-09-12 修回日期:2019-11-27 出版日期:2020-04-10 发布日期:2020-04-26
  • 通讯作者: 魏国齐 E-mail:zhou_guoxiao@163.com;weigq@petrochina.com.cn
  • 作者简介:周国晓(1991-),男,山西万荣人,博士研究生,主要从事天然气地质与地球化学研究.E-mail: zhou_guoxiao@163.com.
  • 基金资助:
    国家科技重大专项课题“高过成熟天然气生成机理与源灶有效性评价”(2016ZX05007-001)

The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin

Guo-xiao ZHOU(),Guo-qi WEI(),Guo-yi HU,Sai-jun WU,Ya-jie TIAN,Cai-yuan DONG   

  1. Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2019-09-12 Revised:2019-11-27 Online:2020-04-10 Published:2020-04-26
  • Contact: Guo-qi WEI E-mail:zhou_guoxiao@163.com;weigq@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05007-001)

摘要:

四川盆地绵竹—长宁裂陷槽内部发育潜力巨大的下寒武统烃源岩。对位于裂陷槽西部中央的错巴沟剖面下寒武统页岩开展了总有机碳(TOC)、矿物组成和主、微量元素测试,以揭示其发育时期的构造背景、陆源输入、古气候、初级生产力、水体氧化还原条件与热液活动等与有机质富集之间的关系。结果表明研究区主要处于被动大陆边缘沉积环境,具有较稳定的沉积速率,气候温暖湿润,存在间歇性气候变冷。TOC值分布在5.96%~23.15%之间,平均含量为11.64%。营养元素P、Ba、Cu和Ni等揭示了该时期高的初级生产力,这是因为温暖湿润的气候加剧了化学风化,从而向海洋输入大量的营养物质导致的。氧化还原敏感元素指标与黄铁矿含量说明研究区Ⅱ段、Ⅲ段富有机质沉积物主要发育于厌氧硫化的底水环境。下寒武统异常富集的微量金属元素可能与早寒武世裂陷槽拉张背景下的海底热液活动有关,其不仅可促进化能自养型生物的发育,同时与海水混合后有利于底水厌氧硫化环境的形成,促进有机质的保存。

关键词: 有机质富集, 下寒武统, 裂陷槽, 四川盆地

Abstract:

The Mianzhu-Changning rift trough has great potential for the development of the Lower Cambrian source rock. Total organic carbon (TOC), mineral composition, major and trace elements of the Lower Cambrian shales in the central part of the rift trough were measured to reveal the relationship between the tectonic setting, terrigenous input, paleoclimate, primary productivity, redox conditions as well as the hydrothermal activity and the enrichment of organic matter during its development period. The results show that the study area is located in the passive continental margin sedimentary environment, with stable sedimentary rate, warm and humid climate alternated by intermittent climate cooling. The TOC values range from 5.96% to 23.15% with an average content of 11.64%. Nutrient elements of P, Ba, Cu and Ni reveal the high primary productivity during this period, which is due to the increased chemical weathering caused by warm and humid climate, thus importing large amounts of nutrients into the ocean. The index of redox sensitive elements and the content of pyrite indicate that the organic-rich sediments in the second and third stages are mainly developed in the bottom water environment of anaerobic sulfurization. The abnormal enrichment of trace metals may be related to the hydrothermal activity from the seabed under the stretching background in rift during the Early Cambrian, which not only provides material for the flourishing of anaerobic chemoautotrophs, but also facilitates the formation of anaerobic sulfurization environment in the bottom water and promotes the preservation of organic matter after mixing with seawater.

Key words: Accumulation of organic matter, Early Cambrian, Inter-platform rift, Sichuan Basin

中图分类号: 

  • TE132.1

图1

四川盆地早寒武世岩相古地理(a)(据文献[24]修改)和错巴沟剖面(b)"

图2

下寒武统页岩的(a)沉积构造背景、(b)化学组成变化三角图和(c) Ga/Rb与K2O/Al2O3关系[(a)据文献[2]、(b)据文献[32]、(c)据文献[29]修改]"

图3

错巴沟剖面下寒武统页岩地球化学特征"

图4

9号页岩样品中的页理构造(a)和层状分布的球粒状黄铁矿(b)①"

图5

页岩中硫的来源①(胡国艺.私人通信,2019.)(a) TOC与TS含量关系 (b) 黄铁矿与干酪根硫同位素分布"

图6

早寒武世裂陷槽中热液活动强度与有机质富集之间的关系"

1 MORT H, JACQUAT O, ADATTE T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation[J]. Cretaceous Research, 2007,28:597-612.
2 HUANG B J, TIAN H, WILKINS R W T, et al. Geochemical characteristics, palaeoenvironment and formation model of Eocene organic-rich shales in the Beibuwan Basin, South China Sea[J]. Marine and Petroleum Geology, 2013,48:77-89.
3 ZENG S Q, WANG J, FU X G, et al. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China[J]. Marine and Petroleum Geology,2015, 64:203-221.
4 ZHANG K, JIANG Z X, YIN L S, et al. Controlling functions of hydrothermal activity to shale gas content:Taking Lower Cambrian in Xiuwu Basin as an example[J]. Marine and Petroleum Geology, 2017,85:177-193.
5 WEI H Y, JIANG, X C. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China[J]. Journal of Petroleum Science and Engineering, 2019,178: 162-179.
6 WEI H Y, CHEN D Z, WANG J G,et al.Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012,353:73-86.
7 FU X G, TAN F W, FENG X L,et al. Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys[J]. International Geology Review,2014, 56:1450-1465.
8 付修根,王剑,汪正江,等.藏北羌塘盆地海相油页岩沉积环境[J].新疆石油地质, 2007,28(5):529-533.
FU X G, WANG J, WANG Z J, et al. Marine oil shale depositional environment of the Qiangtang Basin in northern Tibet[J]. Xinjiang Petroleum Geology,2007,28(5):529-533.
9 FU X G, WANG J, ZENG S Q, et al. Continental weathering and palaeoclimatic changes through the onset of the Early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2017,487:241-250.
10 WU J, LIANG C, HU Z Q, et al. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin[J]. Marine and Petroleum Geology,2019,101:556-565.
11 YAN D T, WANG H, FU Q L, et al. Organic matter accumulation of Late Ordovician sediments in North Guizhou Province, China: Sulfur isotope and trace element evidences[J]. Marine and Petroleum Geology,2015, 59:348-358.
12 吴蓝宇, 陆永潮, 蒋恕, 等.上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J].石油勘探与开发,2018, 45(5): 806-816.
WU L Y, LU Y C, JIANG S, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J].Petroleum Exploration and Development, 2018,45(5):806-816.
13 ZHANG K, LI Z, JIANG S, et al. Comparative analysis of the siliceous source and organic matter enrichment mechanism of the Upper Ordovician-Lower Silurian shale in the upper-lower Yangtze area[J]. Minerals,2018, 8:283.
14 WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology,2015, 66:660-672.
15 YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences,2017, 134: 365-386.
16 夏国栋,冉波,刘树根,等. 绵阳—长宁拉张槽北段麦地坪组烃源岩特征——以绵竹清平剖面为例[J].成都理工大学学报:自然科学版,2018,45(1):14-26.
XIA G D, RAN B, LIU S G, et al. Characteristics of hydrocarbon source rocks of the Lower Cambrian Maidiping Formation in northern Mianyang-Changning intracratonic sag, Sichuan, China[J]. Journal of Chengdu University of Technology :Science & Technology Edition,2018,45(1):14-26.
17 CHEN D Z, WANG J G, QING H R, et al. Hydrothermal venting activities in the Earth Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Che-mical Geology, 2009,258: 168-181.
18 JIANG S Y, YANG J H, LING H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254: 217-228.
19 STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 169:165-191.
20 LIU Z, ZHUANG X, TENG G, et al. The Lower Cambrian Niutitang Formation at Yangtiao (Guizhou, SW China): Organic matter enrichment, source rock potential, and hydrothermal influences[J]. Journal of Petroleum Geology,2015, 38: 411-432.
21 李娟,于炳松,郭峰.黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报,2013,31(1):20-31.
LI J, YU B S, GUO F. Depositional setting and tectonic background analysis on Lower Cambrian black shales in the north of Guizhou Province[J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31.
22 魏国齐, 杨威, 杜金虎, 等. 2015. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015, 35(1): 24-35.
WEI G Q, YANG W, DU J H, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015,35(1): 24-35.
23 魏国齐, 杨威, 张健, 等. 四川盆地中部前震旦系裂谷及对上覆地层成藏的控制[J].石油勘探与开发,2018,45(2): 179-189.
WEI G Q, YANG W, ZHANG J, et al. The pre-Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata[J]. Petroleum Exploration and Development, 2018,45(2): 179-189.
24 王玉满,王淑芳,李新景,等.四川盆地筇竹寺组富有机质页岩沉积主控因素[J].天然气工业,2017,37(S1):1-10.
WANG Y M, WANG S F, LI X J, et al. Main controlling factors of the organic shale deposition in the Qiongzhusi Formation, Sichuan Basin[J]. Natural Gas Industry, 2017,37(S1): 1-10.
25 COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.
26 ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using content and ratio[J]. The Journal of Geology,1986,94: 635-650.
27 王立成,刘成林,张华.华南地块震旦纪晚期—早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析[J]. 地球科学,2013,34(5):585-593.
WANG L C, LIU C L, ZHANG H. Tectonic and sedimentary settings of evaporites in the Dengying Formation, South China Block: Implication for the potential of potash formation[J]. Acta Geoscientica Sinica,2013,34(5):585-593.
28 CALVERT S, PEDERSEN T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology,1993, 113: 67-88.
29 ROY D K, ROSER B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir Basin, Bangladesh[J]. Gondwana Research, 2013, 23: 1163-1171.
30 YAN D, CHEN D, WANG Q, et al. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China[J]. Geology,2010, 38: 599-602.
31 YOUNG G M, WAYNE N H. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic),Ontario,Canada: A chemostratigraphic approach[J].The Geological Society of America,1999,111(2):264-274.
32 DONER Z, KUMRAL M, DEMIREL I, et al. Geochemical characteristics of the Silurian shales from the central tautides, southern Turkey: Organic matter accumulation, preservation and depositional environment modeling[J]. Marine and Petroleum Geology,2019,102:155-175.
33 YANG Z Y, SUN Z M, YANG T S, et al. A long connection (750-380Ma) between South China and Australia: Paleomagnetic constrains[J]. Earth and Planetary Science Letters, 2004,220:423-434.
34 ADEGOKE A K, ABDULLAH W H, HAKIMI M H, et al. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions[J]. Journal of Petroleum Science and Engineering, 2015,135:73-87.
35 LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research,2008, 160: 179-210.
36 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology,2004,206: 289-318.
37 ROSS D J K, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian sedimentary basin[J]. Chemical Geology,2009,260: 1-19.
38 HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A[J]. Chemical Geology,1992, 99: 65-82.
39 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology,2006, 232: 12-32.
40 SCHENAU S J, REICHART G J, DE LANGE G J. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments[J]. Geochimica et Cosmochimica Acta,2005,69(4): 919-931.
41 ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308:65-83.
42 MURRAY R, LEINEN M, ISERN A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods[J]. Paleoceanography, 1993, 8: 651-670.
43 DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta,1997,61:4507-4518.
44 贾智彬,侯读杰,孙德强,等. 贵州地区牛蹄塘组底部烃源岩地球化学特征[J]. 天然气地球科学,2018,29(7):1031-1041.
JIA Z B, HOU D J, SUN D Q, et al. Geochemical characteristics of source rocks in the Lower Cambrian Niutitang Formation, Guizhou Province[J]. Natural Gas Geoscience,2018,29(7): 1031-1041.
45 DAI S F, ZHANG W G, WARD C R, et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China:Influences of terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology, 2013, 105:60-84.
46 WANG X B, TANG Y G, JIANG Y F, et al. Mineralogy and geochemistry of an organic- and V-Cr-Mo-U-rich siliceous rock of Late Permian age, western Hubei Province, China[J]. International Journal of Coal Geology, 2017,172:19-30.
47 ZHAI L N, WU C D, YE Y T, et al. Fluctuations in chemical weathering on the Yangtze block during the Ediacaran-Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017,490:280-292.
48 HALBACH M, KOSCHINESKY A, HALBACH P. Report on the discovery of Gallionella ferruginea from an active hydrothermal field in the deep sea[J]. InterRidge News,2001,10:18-20.
49 刘佳宜,刘全有,朱东亚,等.深部流体在富有机质烃源岩形成重的作用[J].天然气地球科学,2018,29(2):168-177.
LIU J Y, LIU Q Y, ZHU D Y, et al. The role of deep fluid in the formation of organic-rich source rocks[J]. Natural Gas Geoscience,2018,29(2):168-177.
50 SOJO V, HERSCHY B, WHICHER A, et al. The origin of life in alkaline hydrothermal vents[J].Astrobiology, 2016,16(2):181-197.
51 杨瑞东,朱立军,高慧,等.贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征[J].地质论评,2005,51(5):481-492.
YANG R D, ZHU L J, GAO H, et al. A study on characteristics of the hydrothermal vent and relating biota at the Cambrian bottom in Songlin, Zunyi County, Guizhou Province[J]. Geological Review,2005,51(5):481-492.
52 GOLDBERG T, STRAUSS H, GUO Q, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254: 175-193.
53 SCHIDLOWSKI M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept[J]. Precambrian Research,2001, 106:117-134.
54 赵建华, 金之钧, 林畅松,等.上扬子地区下寒武统筇竹寺组页岩沉积环境[J].石油与天然气地质,2019,40(4):701-715.
ZHAO J H, JIN Z J, LIN C S, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4):701-715.
55 BOSTRÖM K, PETERSON M. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology,1969,7:427-447.
[1] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[2] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[3] 杨威, 魏国齐, 李德江, 刘满仓, 谢武仁, 金惠, 沈珏红, 郝翠果, 王小丹. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学, 2020, 31(1): 1-12.
[4] 蔡珺君, 梁锋, 占天慧, 王俐佳, 唐青松, 邓庄, 甘笑非. 动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学, 2020, 31(1): 132-142.
[5] 张天舒, 陶士振, 吴因业, 杨家静, 庞正炼, 杨晓萍, 陈燕燕, 袁苗, 刘敏, 范建玮, 冯荣昌. 层序演化对三角洲—滩坝沉积体系有利储层类型与分布的控制作用[J]. 天然气地球科学, 2019, 30(9): 1286-1300.
[6] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
[7] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331.
[8] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[9] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[10] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[11] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[12] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[13] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[14] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[15] 刘树根, 孙玮, 宋金民, 雍自权, 王浩, 赵聪. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!