天然气地球科学, 2020, 31(2): 163-175 doi: 10.11764/j.issn.1672-1926.2019.11.003

非常规天然气

中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素

邱振,1,2,3, 邹才能1,2,3, 王红岩1,2,3, 董大忠1,2,3, 卢斌1,2,3, 陈振宏1,2,3, 刘德勋1,2,3, 李贵中1,2,3, 刘翰林1, 何江林4, 魏琳5

1.中国石油勘探开发研究院,北京 100083

2.中国石油非常规油气重点实验室,河北 廊坊 065007

3.国家能源页岩气研发(实验)中心,河北 廊坊 065007

4.中国地质调查局成都地质调查中心,四川 成都 610082

5.中国地质大学(北京)能源学院,北京 100083

Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China

QIU Zhen,1,2,3, ZOU Cai-neng1,2,3, WANG Hong-yan1,2,3, DONG Da-zhong1,2,3, LU Bin1,2,3, CHEN Zhen-hong1,2,3, LIU De-xun1,2,3, LI Gui-zhong1,2,3, LIU Han-lin1, HE Jiang-lin4, WEI Lin5

1.PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2.CNPC Key Laboratory of Unconventional Oil and Gas, Langfang 065007, China

3.National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China

4.Chengdu Center, China Geological Survey, Chengdu 610082, China

5.School of Energy Resource, China University of Geosciences(Beijing), Beijing 100083, China

收稿日期: 2019-09-29   修回日期: 2019-11-14   网络出版日期: 2020-02-19

基金资助: 国家自然科学基金项目.  41602119
国家科技重大专项.  2017ZX05035001
中国石油科学研究与技术开发项目.  2016B-0302-01.  YJXK2019⁃16

Received: 2019-09-29   Revised: 2019-11-14   Online: 2020-02-19

作者简介 About authors

邱振(1984-),男,安徽亳州人,高级工程师,博士后,主要从事非常规油气沉积学、非常规油气地质与资源评价等方面研究.E-mail:qiuzhen316@163.com. , E-mail:qiuzhen316@163.com

摘要

中国南方地区五峰组—龙马溪组页岩气2019年产量154×108 m3,已成为全球第二大页岩气产区。基于来自中国南方威远、长宁、涪陵及巫溪等地区典型钻井与露头剖面的1 000余件五峰组—龙马溪组页岩样品数据,综合分析页岩气差异富集特征,探讨其主要控制因素。研究表明我国南方五峰组—龙马溪组页岩气在纵向上和区域上均具有一定差异富集特征,具体表现在:纵向上集中发育甜点段,区域上甜点段厚度、含气量、TOC含量等关键参数存在着较大变化,其中长宁与涪陵地区较优;不同地区的五峰组—龙马溪组页岩含气量与TOC含量均具有较好正相关性,指示着有机质丰度(TOC含量)是影响页岩气富集程度(含气量)的关键因素;五峰组—龙马溪组页岩沉积时期的海洋表层水体总体高生产力,是有机质大量生成的重要前提条件;在断裂带发育较弱的构造稳定区域,硫化缺氧的水体条件是控制页岩气纵向上甜点段及区域上甜点区形成的关键因素,即页岩气差异富集的关键因素。

关键词: 非常规油气沉积学 ; 甜点段(区) ; 海相页岩 ; 龙马溪组 ; 四川盆地

Abstract

In 2019, the annual output of Wufeng-Longmaxi formations shale gas in South China reached 154×108 m3, making China the largest shale gas production region outside North America. Based on data of about 1 000 Wufeng-Longmaxi formations shale samples collected from typical cores and outcrops of Weiyuan, Changning, Fuling and Wuxi areas in South China, characteristics of differential enrichment of shale gas were analyzed, and its controlling factors were discussed. It is concluded that enrichments of Wufeng-Longmaxi formations shale gas in South China show differential vertically and laterally, respectively. In vertical orientation, the sweet-spot intervals of shale gas developed concentratedly, and the thicknesses, gas and TOC contents varied largely in different regions, of which in Changning and Fuling are high quality. For these four areas of shale gas exploration or development, gas contents are well correlated with TOC contents, suggesting that organic matter abundance is one of key factors controlling the enrichment of shale gas. When the Wufeng-Longmaxi formations shale deposited, the ocean surface had high productivity in general, providing prerequisites for formation of abundant organic matter. However, in the relatively stable tectonic zone, euxinic bottom water condition is the key factor controlling the formation of the sweet-spot interval of shale gas vertically and the distribution of sweet-spot area laterally, that is the key factor for differential enrichment of Wufeng-Longmaxi formations shale gas.

Keywords: Unconventional petroleum sedimentology ; Sweet-spot interval (area) ; Marine shale ; Longmaxi Formation ; Sichuan Basin

PDF (6102KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学[J], 2020, 31(2): 163-175 doi:10.11764/j.issn.1672-1926.2019.11.003

QIU Zhen, ZOU Cai-neng, WANG Hong-yan, DONG Da-zhong, LU Bin, CHEN Zhen-hong, LIU De-xun, LI Gui-zhong, LIU Han-lin, HE Jiang-lin, WEI Lin. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China. Natural Gas Geoscience[J], 2020, 31(2): 163-175 doi:10.11764/j.issn.1672-1926.2019.11.003

0 引言

页岩气是指主要以游离态和吸附态赋存于富有机质页岩层段中的天然气,主体上为自生自储、大面积连续型天然气聚集[1,2,3,4]。目前,中国页岩气主要产自华南地区四川盆地及周缘的五峰组—龙马溪组[1,5,6,7,8,9]。五峰组—龙马溪组页岩气经过近10年的勘探开发,逐步形成了威远、长宁—昭通、涪陵等国家级示范区及泸州、东溪—丁山、叙永、巫溪等诸多重要勘探潜力区[6,9]图1)。截至2018年4月五峰组—龙马溪组页岩气累计探明地质储量超1×1012 m3,2019年中石油西南油气田在长宁、威远页岩气田又新增页岩气探明地质储量6 050×108 m3。截至2019年底,已探明地质储量约为1.8×1012 m3。我国页岩气已具产量规模,2018年产量约为109×108 m3,2019年产量约为154×108 m3,为全球第二大页岩气产区。特别是近几年来,随着勘探深度不断增加,深层页岩气逐步取得重大突破。中石油矿权内足202-H1井、黄202井、泸203井相继获得高产气流,其中中石油西南油气田公司泸203井测试页岩气日产量达137.9×104 m3[10],成为国内首口单井测试日产量超百万立方米的页岩气井。2019年以来,中石化在四川盆地南川复杂构造区常压页岩气和綦江东溪—丁山深层页岩气勘探取得重要突破,落实了2个1 000×108 m3规模增储。同时,中石油浙江油田公司在叙永县太阳构造的首口浅层页岩气井——阳102井获得工业气流,实现了浅层页岩气领域重要突破。这些勘探开发新进展进一步表明,五峰组—龙马溪组页岩气资源潜力较大,在我国未来天然气产量增长中将发挥着重要作用。

图1

图1   中国南方五峰组—龙马溪组页岩分布及主要页岩气勘探开发区域分布(区域地质修改自文献[16,17];主要勘探矿权区修改自文献[18])

Fig.1   The paleogeography of Wufeng-Longmaxi formations shale (modified from the Refs.[16-17]) and the distribution of main exploration blocks of shale gas in South China(modified from the Ref. [18])


大量勘探开发实践与研究表明[1,6,7,11,12,13,14,15,16,17,18],五峰组—龙马溪组页岩气富集段在纵向上特征显著,即:五峰组—龙马溪组页岩层系厚度一般可达300 m以上,但页岩气主要富集于该层系底部的富有机质页岩段,厚度一般为10~60 m,不到页岩层系总厚度的五分之一[4]。同时,其在区域上也具有较大差异,包括页岩气富集层段厚度、含气量、单井产量等方面。如涪陵和长宁地区页岩气富集层段含气量平均约为4.2 m3/t和4.1 m3/t,威远和昭通地区相对偏低,平均值分别为2.9 m3/t和2.3 m3/t[3]。目前我国一些学者[1,8,13,14,15]对五峰组—龙马溪组页岩气富集与高产模式及控制因素已开展了较多研究,并基本达成共识,即早期富有机质沉积是富集的基础、后期有效保存条件是高产的关键。由于这些研究多数是针对一个区块(如涪陵焦石坝)或者不同区块的高产富集特征进行研究,而对不同地区的页岩气差异富集特征及控制因素探讨相对偏少。同时,已有研究更多偏重于页岩气高产的控制因素探讨,而对页岩气富集基础相关的有机质差异富集研究较少。因此,基于前人已发表成果,结合笔者们已有研究基础,本文对我国南方威远、长宁、涪陵及巫溪等地区五峰组—龙马溪组页岩气差异富集特征进行初步研究,尝试从有机质差异富集沉积的研究角度进一步探讨其控制因素,以期为我国页岩气的高效勘探开发提供有力支撑。

1 页岩气差异富集特征

诸多勘探开发实践已证实我国南方五峰组—龙马溪组页岩气含气量纵向上变化较大,主要富集于该页岩层系的底部富有机质页岩段,含气量一般分布在1.5~4.5 m3/t之间,TOC含量一般分布在1.5%~5.0%之间[1,12,13,15,19]。为了更好地表征五峰组—龙马溪组页岩气差异富集特征,本文基于已有研究基础,结合国土资源部2014年发布的《页岩气资源储量计算与评价技术规范》(DZ/T0254—2014)相关的TOC含量、含气量等下限标准,把含气量≥2.0 m3/t 和TOC含量≥2.0%为主的层段作为页岩气富集层段,称为页岩气有利(富集)段,其余称为非富集段(图2)。在此基础上,结合中国石油公司海相页岩气勘探开发实践,将有利(富集)段内含气量≥3.0 m3/t 和TOC含量≥3.0%为主的层段作为页岩气甜点段[4]图3)。“甜点”(Sweet spot)一词较早由SHURR等[20]提出,主要指非常规浅层生物气成因天然气盆地中含气或产气最好的地理区域。随后这一个概念被应用于非常规油气资源评价中[21,22,23]。我国学者将这一术语广泛用于非常规油气勘探开发相关研究中[1,6,24,25,26,27,28],并进一步扩大它的使用范围,将岩石地层中油气富集层段内的优质段称为“甜点段”(Sweet-spot interval),是当前勘探开发的目标层段,而甜点段在地理区域上连续分布,并具有一定规模,可以形成“甜点区”(Sweet-spot area)[4],它是页岩气平面上的相对富集区。中国南方地区五峰组—龙马溪组页岩气有利(富集)段与甜点段在厚度、含气量、TOC含量等方面具有明显差异。

图2

图2   中国南方五峰组—龙马溪组页岩气主要勘探开发区有利(富集)段分布特征(修改自文献[4],部分数据引自文献[1, 8, 13])

Fig.2   Distribution of favorable intervals of Wufeng-Longmaxi formations shale gas from main exploration blocks of shale gas in South China (modified from the Ref. [4]; some data from the Refs. [1, 8, 13])


图3

图3   中国南方五峰组—龙马溪组页岩气主要勘探开发区甜点段分布特征(部分数据引自文献[1, 8, 13])

Fig.3   Distribution of sweet-spot intervals of Wufeng-Longmaxi formations shale gas from main exploration blocks of shale gas in South China (some data from the Refs. [1, 8, 13])


1.1 甜点段厚度差异分布特征

五峰组—龙马溪组页岩层系在我国南方地区广泛分布(图1),厚度一般可达300 m以上,其中龙马溪组可分为2段,即龙一段和龙二段。页岩气非富集段分布于龙一段中上部和龙二段,岩性主要为灰黑—灰绿色页岩夹泥质粉砂岩,总体上厚度较大,一般为100~250 m(图2);页岩气有利(富集)段主要位于龙一段底部和五峰组,由黑色页岩组成,厚度一般为10~60 m [4]图2);而页岩气甜点段则位于有利(富集)段中下部,由黑色富硅质页岩组成,厚度一般为10~40 m(图3)。

基于前人[1,7,8,9,10,11,13,29]已发表成果,结合笔者们已有研究基础,综合分析表明,威远、长宁、涪陵及巫溪地区的有利(富集)段和甜点段厚度也存在着较大差异。威远地区的有利(富集)段厚度一般为10~45 m,长宁地区为25~50 m,涪陵地区为35~75 m;而巫溪地区的厚度最大,一般大于40 m,最厚者可达90 m。对于这4个地区的甜点段,涪陵地区的厚度最大,一般为30~50 m;其次为长宁地区(15~40 m),而威远和巫溪地区的相对较薄,其分布范围分别为5~10 m和5~20 m。

1.2 含气量差异分布特征

页岩含气量是一吨岩石中所含天然气的总量,主要包括游离气和吸附气。含气量高低是页岩气富集程度的直接体现,是决定含气页岩是否具有商业开采价值的关键指标。基于我国南方五峰组—龙马溪组600余件页岩含气量数据,统计结果表明页岩纵向上含气量变化较大(图4),低者几乎不含气,高者可达9.0 m3/t。非富集段含气量一般低于1.5 m3/t或2.0 m3/t[图4(a)];有利(富集)段含气量一般为2.0~4.5 m3/t[图4(b)],其中最富集的为甜点段,其含气量一般为3.0~7.5 m3/t[图4(c)]。

图4

图4   中国南方五峰组—龙马溪组页岩气非富集段(a)、有利富集段(含甜点段)(b)、甜点段(c)含气量分布(部分数据引自文献[1, 7-9, 11-13, 19, 29])

Fig.4   Distribution of total gas contents from unfavorable interval (a), favorable interval (b), sweet-spot interval (c) of Wufeng-Longmaxi formations shale gas in South China (some data from the Refs.[1, 7-9, 11-13, 19, 29])


上述数据进一步按照不同区域对比分析,主要为威远、长宁、涪陵及巫溪地区,它们的有利(富集)段和甜点段含气量均存在着较大差异(图5),具体为:

图5

图5   中国南方不同区域(典型井)五峰组—龙马溪组页岩气有利(富集)段(a)、甜点段(b)含气量差异分布

Fig.5   Distribution of total gas contents from favorable interval (a), sweet-spot interval (b) of Wufeng-Longmaxi formations shale gas from typical gas wells in South China


(1)有利(富集)段:威远地区和巫溪地区的含气量较相似,主体数据分别为1.8~4.9 m3/t和1.9~4.9 m3/t;长宁地区一般为2.1~5.5 m3/t;涪陵地区的最高,一般为3.8~7.0 m3/t[图5(a)]。

(2)甜点段:威远地区的含气量主体介于4.7~7.2 m3/t;长宁地区一般为3.2~5.5 m3/t;涪陵地区的仍为最高,一般为4.7~7.7 m3/t;巫溪地区含气量相对最差,一般为3.4~5.0 m3/t[图5(b)]。

值得注意的是,含气量差异在部分可能来自于测定方法的不同。目前页岩含气量主要通过2种方式测试:一种为间接测定法,即通过等温吸附实验确定吸附气含量、测井解释或实验确定游离气含量,从而得出总含气量;另一种为直接测定法,即通过钻井现场取岩心直接放入密封罐,直接测定页岩中含气量[30]。间接法中受实测数据限制难以准确刻度测井数据从而造成页岩地层中游离气含量估算存在着一定误差;同时,由于吸附实验难以完全模拟真实地层条件下的吸附气量,以此估算吸附气量也存在着一定误差;直接法中损失气量无法直接测定,从而使得游离气和吸附气含量估算存在着一定偏差,尤其是对游离气含量影响最大。诸多研究表明,游离气是页岩含气量的主要部分,如美国典型页岩气田中游离气占总含气量的20%~80%[31],而我国四川盆地五峰组—龙马溪组页岩气总游离气含量可达70%。故本文尽量选择同一种测定方法获得的含气量数据,以减少不同测试方法带来的误差。

1.3 页岩有机质差异富集特征

基于我国南方五峰组—龙马溪组1 000余件页岩TOC含量数据分析,结果表明该套页岩层系纵向上TOC含量变化较大(图6),低者可在0.5%以下,高者可达10%以上。非富集段TOC含量一般低于2.0% [图6(a)];有利(富集)段TOC含量变化范围较大,主体分布为2.0%~5.0% [图6(b)];甜点段作为页岩气有利段中最优质含气量富集段,其TOC含量主体为3.0%~6.5% [图6(c)]。对来自威远、长宁、涪陵及巫溪地区典型井或剖面进行区域对比分析,如图7所示,五峰组—龙马溪组页岩气有利(富集)段和甜点段TOC含量存在着一定差异。对于页岩气有利(富集)段,威远地区和长宁地区的TOC含量较相似,主体数据分别为2.1%~4.7%和2.2%~4.9%;涪陵地区和巫溪地区的相对偏高,主体数据分别为2.0%~6.7%和1.7%~5.9%[图7(a)]。这4个地区的甜点段TOC含量与有利段的总体趋势相似,表现为威远地区和长宁地区偏低,主体数据分别为4.1%~5.4%和3.3%~5.4%;而涪陵地区和巫溪地区的相对偏高,主体数据分别为4.0%~7.5%和4.7%~8.0% [图7(b)]。

图6

图6   中国南方五峰组—龙马溪组页岩气非富集段(a)、有利富集段(含甜点段)(b)、甜点段(c)TOC含量分布(部分数据引自文献[1, 7-9, 11-13, 19, 32])

Fig.6   Distribution of TOC contents from unfavorable interval (a), favorable interval (b), sweet-spot interval (c) of Wufeng-Longmaxi formations shale gas in South China (some data from the Refs. [1, 7-9, 11-13, 19, 32])


图7

图7   中国南方不同区域(典型井)五峰组—龙马溪组页岩气有利(富集)段(a)、甜点段(b)的TOC含量差异分布

Fig.7   Distribution of TOC contents from favorable interval (a), sweet-spot interval (b) of Wufeng-Longmaxi formations shale gas from typical gas wells in South China


综上所述,我国南方五峰组—龙马溪组页岩气在纵向上和区域上均具有一定差异富集特征,具体表现在纵向上集中发育甜点段,区域上甜点段厚度、含气量、TOC含量存在较大变化。

2 页岩有机质丰度是影响页岩气富集程度的关键因素

含气量作为衡量页岩气富集程度的关键指标,其影响因素较多[29,32,33,34,35,36],如岩性、有机质类型、有机质丰度即TOC含量、成熟度、石英含量、黏土矿物含量、孔隙度、黄铁矿含量及后期保存条件(断裂发育程度)等。而对于我国南方普遍高成熟度的五峰组—龙马溪组页岩,诸多研究已表明页岩TOC含量是影响页岩气含气量的重要因素[29,34,35]。基于我国南方威远、长宁、涪陵、巫溪等地区近400件岩心含气量与TOC含量数据统计分析,结果表明这4个地区的含气量与TOC含量具有较好正相关性(图8)。总体上,对于相同TOC含量样品,威远地区含气量最高,其次分别为长宁地区、涪陵地区,而巫溪地区含气量最差(图8)。

图8

图8   中国南方不同区域(典型井)五峰组—龙马溪组页岩气含气量与TOC含量相关性分析(部分数据引自文献[1, 7-9, 11-13, 19, 29])

Fig.8   Cross plot between total gas contents and TOC contents of Wufeng-Longmaxi formations shale gas from different exploration blocks (typical gas wells) in South China (some data from the Refs.[1,7-9,11-13,19,29])


五峰组—龙马溪组页岩中含有大量有机质,有利于页岩气大量生成和储集[4]。一方面,是因为这些有机质主要由具有较多脂肪族结构的浮游藻类、疑源类和细菌等组成[37],它们均具有较高的生烃潜力[38,39];另一方面,有机质在生烃过程中热解作用可以发育大量纳米级孔隙[40,41],形成纳米级孔喉系统,为页岩气提供大量储集空间[40]。据统计美国5大主要产气页岩层系中,有机质纳米孔所储层的页岩气占其总储量的20%~50%[42,43]。中国南方地区五峰组—龙马溪组页岩气甜点段的有机质孔隙直径主体分布于50~300 nm[1],其孔隙占页岩总孔隙度的50%以上[6,13]。因此,可以认为五峰组—龙马溪组页岩的有机质丰度(TOC含量)是影响其页岩气富集程度的关键因素。

3 五峰组—龙马溪组有机质及含气量差异富集主控因素探讨

诸多研究表明页岩气在页岩中形成与富集受到水体沉积条件、有机质聚集等早期沉积环境及后期构造活动等因素的共同控制[1,4,7,8,9,10,11,12,13,14,15,19,25]。但由于页岩气作为自生自储的天然气藏,具有“一井一藏”富集特征,故在相对远离断裂带的构造相对稳定区域,页岩含气量高低主要受控于其有机质丰度(TOC含量),正如上文所述(图8)。因此,可以从有机质差异富集沉积的控制因素分析入手,此探讨含气量差异富集的主控因素。

有机质富集沉积的主控因素研究相对较多[44,45,46,47,48],在本质上主要涉及到水体表层生产力和底部氧化还原条件。高古生产力是有机质大量形成的前提条件,缺氧沉积水体有利于有机质大量保存[17,49,50,51,52,53]。大量研究表明,五峰组—龙马溪组页岩中发育大量藻类、放射虫、笔石等生物[37,54,55,56,57],且具有较高的钡(Ba)、磷(P)、镍(Ni)、锌(Zn)等营养元素含量[8,17,58]。这些均指示着该时期总体上为高生产力背景。生源钡(Babio)常作为现代和古代海洋生产力的指标,现代环太平洋赤道附近高生产力地区水体中Babio含量一般在1 000×10-6以上[59],古代富有机质沉积物中Babio含量一般在500×10-6以上[60,61]。我国南方五峰组—龙马溪组页岩Babio含量一般高于500×10-6[图9(a)] [50,62,63],表明其沉积时期的海洋表层水体总体上为高生产力。

图9

图9   中国南方五峰组—龙马溪组不同层段TOC含量与古生产力指标Babio(a)、缺氧条件指标U/Th(b)和V/Cr(c)及交会图(部分数据引自文献[17, 32, 50, 53, 62])

Fig.9   Cross plots between TOC content and Babio concentration (a), TOC content and U/Th ratio (b), TOC content and V/Cr ratio (c) from different intervals of Wufeng-Longmaxi formations shale gas in South China (some data from the Refs. [17, 32, 50, 53, 62])


诸多研究已证实,U、V、Mo、Ni、Cu等微量元素对水体氧化还原条件比较敏感,它们与Th、Cr等微量元素的比值,可作为水体氧化还原条件的指标[45,64],如U/Th, V/Cr等[64,65]。统计分析表明,我国南方五峰组—龙马溪组页岩有机质富集程度与沉积水体的缺氧程度关系密切,页岩气甜点段主要沉积于缺氧水体条件[图9(b),图9(c)]。基于长宁双河剖面五峰组—龙马溪组近100件页岩样品中超过10 000颗粒草莓状黄铁矿统计分析,结果表明页岩气甜点段的草莓状黄铁矿粒径一般<5 μm,笔者们进一步证实了甜点段沉积于硫化缺氧的水体条件[66]

由于铁组分、钼(Mo)等元素含量可以更为准确地判别水体缺氧程度[67,68],笔者基于已发表研究成果[32],结合高分辨率笔石带,对威远、长宁、涪陵及巫溪等地区典型井及剖面五峰组—龙马溪组页岩的铁组分、钼(Mo)等元素进行综合分析(图10)。五峰组—龙马溪组沉积时期,中国南方发育扬子陆棚海,自南向北水体逐渐加深[32],这4个地区分别位于扬子陆棚海的内陆棚(威远和长宁)、中陆棚(涪陵)和外陆棚(巫溪)。对比分析结果表明:

图10

图10   中国南方不同区域五峰组—龙马溪组底部页岩沉积水体缺氧条件演化分布(修改自文献[32])

Fig.10   Evolution of bottom water redox condition of Wufeng-Longmaxi formations shale from different exploration blocks in South China (modified from the Ref. [32])


(1)五峰组—龙马溪组底部即页岩气有利(富集)段沉积时期,总体上发育2个铁化—硫化缺氧旋回。第一个旋回对应于笔石带为 D. Complexus -M. extraodinarius,第二个旋回对应于笔石带为M. extraodinarius- A. ascensus

(2)区域上硫化缺氧发育程度存在差异,具体为:涪陵地区开始硫化缺氧最早,持续时间最长,其次为长宁地区和巫溪地区,而威远地区的硫化缺氧开始最晚,持续时间最短[图10(b),图10(c)]。

(3)页岩气甜点段纵向上分布与区域上展布,与硫化缺氧的水体条件发育程度对应较好。具体为涪陵地区甜点段厚度最大(30~50 m),硫化缺氧持续时间最长;其次为长宁地区(15~40 m),硫化缺氧持续时间较长;而威远地区的甜点段最薄(5~10 m),其硫化缺氧持续时间最短(图3,图10)。

基于中国南方四川盆地及周缘五峰组—龙马溪组页岩气甜点段(区)地质特征解剖,结合当前页岩气勘探开发实践,笔者们[4]提出了页岩气甜点段形成需具有4项基本条件:①缺氧陆棚环境发育富有机质沉积,有利于页岩气大量生成;②有机质发育纳米孔喉系统,有利于页岩气大量储集;③相对稳定陆棚环境发育封闭的顶板与底板,有利于页岩气有效保存;④低沉积速率控制纹层发育与富硅质沉积,易于形成微裂缝,有利于页岩气有效开采。在这4项基本条件中,硫化缺氧陆棚环境是其他3个条件发育的物质基础,也是非常规油气沉积学的重要研究内容之一[4,69]。而甜点区作为甜点段在区域上的延伸,它的形成需要在区域上具备甜点段发育的所有条件,而其最终规模与分布则受控于后期构造活动的改造强度。这是因为我国南方地区经历海西、印支、燕山等多期构造运动,五峰组—龙马溪组页岩层系沉积以后经历了多次挤压、抬升等[14,70,71],一些地区发育断裂带。在断裂带附近页岩层系中,断层能够切穿页岩气富集层段,形成断裂系统网络,会降低页岩中含气量,加快甜点段页岩气散失,从而不利于页岩气甜点区形成[4]。比如川东北巫溪地区五峰组—龙马溪组页岩气甜点段厚度可达20 m,明显厚于威远等其他页岩气产区(图3)。但其页岩产状变陡且发育大量断层,使得在页岩TOC含量相同情况下,巫溪地区含气量明显低于威远等其他地区(图8)。

需要特别说明的是,页岩气作为自生自储天然气藏,虽然具有“一井一藏”特征,但其“富集”不一定代表“高产”。这是因为影响页岩气单井产量高低因素较多且机理较为复杂,包括含气量、地层压力、天然裂缝等地质条件、工程、开发等技术诸多因素。如泸州地区五峰组—龙马溪组页岩气甜点段的含气量与TOC含量平均分别为5.5~6.7 m3/t和4.0%~5.5%,与涪陵、长宁地区的差异不大,甚至略低。2019年初泸203井测试页岩气日产量高达137.9×104 m3,这与该地区甜点段埋深、钻井技术、压裂工艺等密切相关。泸州地区甜点段埋深一般超过3 500 m,超过长宁地区的平均埋深(1 500~2 000 m)。泸203井采用深层页岩气优快钻井技术[10],并在压裂过程中借鉴北美新一代压裂技术,实施“密切割+高强度加砂+暂堵转向”压裂工艺,大幅度提高了微裂缝发育页岩储层的体积改造程度。另一个比较典型勘探实例为巫溪地区。虽然该地区发育甜点段,但所钻探的3口评价井(巫溪2井、溪202和溪203井)均未见页岩气产量。因为该区构造断裂发育,甜点段难以在区域上形成甜点区,从而使得水平井钻井过程中易沟通断裂,易于天然气散失,压裂后更是难以形成产量。

综上所述,我国南方五峰组—龙马溪组页岩沉积时期的海洋表层水体总体为高生产力背景,是有机质大量生成的重要前提条件,而在断裂带发育较弱的构造稳定区域,硫化缺氧的水体条件是控制页岩气纵向上甜点段及区域上甜点区形成的关键因素。

4 结论

(1)我国南方海相五峰组—龙马溪组页岩气具有明显差异富集特征,具体为:纵向上在页岩气有利(富集)段内发育甜点段,不同区域上甜点段的厚度、含气量、TOC含量存在较大变化。综合分析表明,在威远、长宁、涪陵3个页岩气开发示范区及巫溪勘探区中,涪陵地区的甜点段厚度最大,一般为30~50 m,含气量也最高,主体为4.7~7.7 m3/t,TOC含量较高,一般为4.0%~7.5%;其次为长宁地区,其甜点段厚度一般为15~40 m,含气量一般为3.2~5.5 m3/t,TOC含量一般为3.3%~5.4%;威远地区的甜点段厚度最小(5~10 m),但其含气量相对较高,主体为4.7~7.2 m3/t,TOC含量一般为4.1%~5.4%;巫溪地区甜点段含气量相对最差,一般为3.4~5.0 m3/t,且其厚度相对较薄(5~20 m),但其TOC含量最高,一般为4.7%~8.0%。

(2)影响页岩气含气量高低的因素较多,但威远、长宁、涪陵、巫溪等地区典型井的含气量与TOC含量关系分析结果表明,它们具有较好正相关性。总体上,对于相同TOC含量样品,威远地区含气量最高,其次分别为长宁地区、涪陵地区,而巫溪地区含气量最差。由于大量有机质,有利于页岩气大量生成和储集,故提出五峰组—龙马溪组页岩的有机质丰度(TOC含量)是影响其页岩气富集程度的关键因素。

(3)我国南方五峰组—龙马溪组页岩沉积时期的海洋表层水体总体为高生产力背景,是有机质大量生成的重要前提条件。尽管我国南方五峰组—龙马溪组页岩气在页岩中形成与富集受到水体沉积条件、有机质聚集等早期沉积环境及后期构造活动等因素的共同控制,但在断裂带发育较弱的构造稳定区域,硫化缺氧的水体条件是控制页岩气纵向上甜点段及区域上甜点区形成的关键因素,即页岩气差异富集的关键因素。

参考文献

邹才能董大忠王玉满.

中国页岩气特征、挑战及前景(一)

[J]. 石油勘探与开发, 2015, 426): 689-701.

[本文引用: 9]

ZOU C N, DONG D Z, WANG Y M, et al.

Shale gas in China: Characteristics, challenges and prospects (Ⅰ)

[J].Petroleum Exploration and Development, 2015, 426): 689-701.

[本文引用: 9]

贾承造.

论非常规油气对经典石油天然气地质学理论的突破及意义

[J]. 石油勘探与开发, 2017, 44(1): 1-11.

[本文引用: 1]

JIA C Z.

Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory

[J]. Petroleum exploration and Development, 2017, 44(1): 1-11.

[本文引用: 1]

焦方正.

非常规油气之“非常规”再认识

[J]. 石油勘探与开发, 2019, 46(5): 803-810.

[本文引用: 2]

JIAO F Z.

Re-recognition of “unconventional” in unconventional oil and gas

[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810.

[本文引用: 2]

QIU Z, ZOU C N.

Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology

[J]. Journal of Asian Earth Sciences, 2019, in press. .

URL     [本文引用: 11]

梁兴王高成徐政语.

中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例

[J].天然气工业, 2016, 36(1): 33-42.

[本文引用: 1]

LIANG X, WANG G C, XU Z Y, et al.

Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains,South China: A case study from Zhaotong national shale gas demonstration zone

[J]. Natural Gas Industry, 2016, 36(1): 33-42.

[本文引用: 1]

马永生蔡勋育赵培荣.

中国页岩气勘探开发理论认识与实践

[J]. 石油勘探与开发, 2018, 45(4): 1-14.

[本文引用: 5]

MA Y S, CAI X Y, ZHAO P R.

China’s shale gas exploration and development: Understanding and practice

[J]. Petroleum Exploration and Development, 2018, 45(4): 1-14.

[本文引用: 5]

马新华谢军.

川南地区页岩气勘探开发进展及发展前景

[J]. 石油勘探与开发, 2018, 45(1): 1-9.

[本文引用: 4]

MA X H, XIE J.

The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China

[J]. Petroleum Exploration and Development, 2018, 45(1): 1-9.

[本文引用: 4]

郭旭升胡东风魏志红.

涪陵页岩气田的发现与勘探认识

[J]. 中国石油勘探, 2016, 21(3): 24-37.

[本文引用: 5]

GUO X S, HU D F, WEI Z H, et al.

Discovery and exploration of Fuling shale gas field

[J]. China Petroleum Exploration, 2016, 21(3): 24-37.

[本文引用: 5]

郭旭升.

四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素

[J]. 天然气地球科学, 2019, 30(1): 1-10.

[本文引用: 4]

GUO X S.

Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin

[J]. Natural Gas Geoscience, 2019, 30(1): 1-10

[本文引用: 4]

郑述权谢祥锋罗良仪.

四川盆地深层页岩气水平井优快钻井技术——以泸203井为例

[J]. 天然气工业,2019, 39(7): 88-93.

[本文引用: 4]

ZHENG H Q, XIE X F, LUO L Y, et al.

Fast and efficient drilling technologies for deep shale gas horizontal wells in the Sichuan Basin: A case study of Well Lu 203

[J]. Natural Gas Industry, 2019, 39(7): 88-93.

[本文引用: 4]

郭彤楼张汉荣.

四川盆地焦石坝页岩气田形成与富集高产模式

[J]. 石油勘探与开发, 2014, 41(1): 28-36.

[本文引用: 3]

GUO T L, ZHANG H R.

Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin

[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.

[本文引用: 3]

郭旭升.

南方海相页岩气"二元富集"规律:四川盆地及周缘龙马溪组页岩气勘探实践认识

[J]. 地质学报, 2014, 88(7): 1209-1218.

[本文引用: 3]

GUO X S.

Rules of two-factor enrichment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area

[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.

[本文引用: 3]

金之钧胡宗全高波.

川东南地区五峰组—龙马溪组页岩气富集与高产控制因素

[J]. 地学前缘,2016, 23(1): 1-10.

[本文引用: 6]

JIN Z J, HU Z Q, GAO B, et al.

Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin

[J]. Earth Science Frontiers, 2016, 23(1): 1-10

[本文引用: 6]

何治亮聂海宽张钰莹.

四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析

[J]. 地学前缘,2016, 23(2): 8-17.

[本文引用: 4]

HE Z L, NIE H K, ZHANG Y Y.

The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas

[J]. Earth Science Frontiers, 2016, 23(2): 8-17.

[本文引用: 4]

翟刚毅王玉芳包书景.

我国南方海相页岩气富集高产主控因素及前景预测

[J]. 地球科学, 2017, 42(7): 1057-1068.

[本文引用: 4]

ZHAI G Y, WANG Y F, BAO S J, et al.

Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China

[J]. Earth Science, 2017, 42(7): 1057-1068.

[本文引用: 4]

CHEN X, RONG J Y, LI Y, et al.

Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204: 353-372

[本文引用: 2]

邱振江增光董大忠

巫溪地区五峰组—龙马溪组页岩有机质沉积模式

[J]. 中国矿业大学学报, 201746(5):923-932

[本文引用: 4]

QIU Z, JIANG Z G, DONG D Z, et al

Organic matter enrichment model of the shale in Wufeng-Longmachi Formation of Wuxi area

[J]. Journal of China University of Mining & Technology, 2017, 46(5):923-932

[本文引用: 4]

国土资源部中国地质调查局.

中国页岩气资源调查报告

[R]. 2015-01-23.http:∥www.cgs.gov.cn/xwl/ddyw/201603/t2016 0309_302195.html.

[本文引用: 2]

China Geological Survey.

Report on shale gas resources in China

[R].2015-01-23.http://www.cgs.gov.cn/xwl/ddyw/201603/ t20160309_302195.html.

[本文引用: 2]

雷丹凤李熙喆位云生.

海相页岩有效产气储层特征—以四川盆地五峰组—龙马溪组页岩为例

[J].中国矿业大学学报, 2019, 46(5): 923-932.

[本文引用: 2]

LEI D F, LI X Z, WEI Y S, et al.

Characteristics of effective gas-producing reservoir in marine shale: A case study of the Wufeng-Longmaxi shales in Sichuan Basin

[J]. Journal of China University of Mining & Technology,2019,46(5): 923-932.

[本文引用: 2]

SHURR G W, RIDGLEY J L.

Unconventional shallow biogenic gas system

[J]. AAPG Bulletin, 2002, 86(11), 1939-1969.

[本文引用: 1]

KLETT T R, CHARPENTIER R R.

Forspan Model User’s Guide

[R]. U.S. Geological Survey Open-File Report,2003, 03-384. http://pubs.usgs.gov/of/2003/ofr-03-354/.

[本文引用: 1]

POLLASTRO R M.

Total petroleum system assessment of undiscovered resources in the giant Barnett shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas

[J]. AAPG Bulletin, 2007, 91: 551-578.

[本文引用: 1]

邱振邹才能李建忠, .

非常规油气资源评价进展与未来展望

[J]. 天然气地球科学, 2013, 24(2): 238-246.

[本文引用: 1]

QIU Z, ZOU C N, LI J Z, et al.

Unconventional petroleum resources assessment: Progress and future prospects

[J]. Natural Gas Geoscience, 2013, 24(2):238-246.

[本文引用: 1]

杨智侯连华陶士振.

致密油与页岩油形成条件与“甜点区”评价

[J]. 石油勘探与开发,2015,42(5):555-565.

[本文引用: 1]

YANG Z, HOU L H, TAO S Z, et al.

Formation conditions and “sweet spot ” evaluation of tight oil and shale oil

[J]. Petroleum Exploration and Development,2015,42(5):555-565.

[本文引用: 1]

陈桂华白玉湖陈晓智

页岩油气纵向综合甜点识别新方法及定量化评价

[J]. 石油学报,2016, 37(11):1337-1342.

[本文引用: 2]

CHEN G, BAI X, CHEN X, et al.

A new identification method for the longitudinal intergrated shale oil/gas sweet spot and its quantitative evaluation

[J]. Acta Petrolei Sinica, 2016, 37(11):1337-1342.

[本文引用: 2]

徐政语梁兴王维旭.

上扬子区页岩气甜点分布控制因素探讨: 以上奥陶统五峰组—下志留统龙马溪组为例

[J].天然气工业, 2016, 36(9): 16-24.

[本文引用: 1]

XU Z Y, LIANG X, WANG W X, et al.

Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region: A case study of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,Sichuan Basin

[J]. Natural Gas Industry, 2016, 36(9): 16-24.

[本文引用: 1]

赵贤正, 蒲秀刚, 韩文中, .

细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例

[J]. 石油勘探与开发, 2017, 44(4): 492-502.

[本文引用: 1]

ZHAO X Z, PU X G, HAN W Z, et al.

A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China

[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502.

[本文引用: 1]

周立宏蒲秀刚陈长伟陆相湖盆细粒岩油气的概念、特征及勘探意义:

以渤海湾盆地沧东凹陷孔二段为例

[J].地球科学,2018, 43(10): 3625-3639.

[本文引用: 1]

ZHOU L H, PU X G, CHEN C W, et al.

Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin

[J]. Earth Science, 2018, 43(10): 3625-3639.

[本文引用: 1]

张汉荣.

川东南地区志留系页岩含气量特征及其影响因素

[J]. 天然气工业,2016, 36(8): 36-42.

[本文引用: 3]

ZHANG H R.

Gas content of the Silurian shale in the SE Sichuan Basin and its controlling factors

[J]. Natural Gas Industry, 2016, 36(8): 36-42.

[本文引用: 3]

周尚文王红岩薛华庆.

页岩含气量现场测试中损失气量的计算方法对比分析

[J]. 中国科技论文, 2018, 13(21): 2453-2460.

[本文引用: 1]

ZHOU S W, WANG H Y, XUE H Q, et al.

Comparative analysis of calculation methods for lost gas in the field-test of shale gas content

[J].China Science Paper, 2018, 13(21):2453-2460.

[本文引用: 1]

李玉喜乔德武姜文利.

页岩气含气量和页岩气地质评价综述

[J]. 地质通报, 2011, 30(2): 308-317.

[本文引用: 1]

LI Y X, QIAO D W, JIANG W L, et al.

Gas content of gas-bearing shale and its geological evaluation summary

[J]. Geological Bulletin of China, 2011, 30(2): 308-317.

[本文引用: 1]

ZOU C N, QIU ZHEN, POUTON S W, et al.

Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction

[J]. Geology, 2018, 46(6): 535-538.

[本文引用: 4]

ZHANG T, ELLIS G S, RUPPE S C, et al.

Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems

[J].Organic Geochemistry,2012,47:120-131.

[本文引用: 1]

张琴刘洪林拜文华.

渝东南地区龙马溪组页岩含气量及其主控因素分析

[J].天然气工业,2013, 33(5): 35-39.

[本文引用: 2]

ZHANG Q,LIU H L, BAI W H, et al.

Shale gas content and its main controlling factors in Longmaxi shales in southeastern Chongqing

[J]. Natural Gas Industry, 2013, 33(5): 35-39.

[本文引用: 2]

毕赫姜振学李鹏.

渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响

[J]. 天然气地球科学, 2014, 25(8): 1275-1283.

[本文引用: 2]

BI H, JIANG Z X, LI P, et al.

Shale reservoir characteristcs and its influence on gas content of Wufeng-Longmaxi Formation in the southeastern Chongqing

[J]. Natural Gas Geoscience, 2014, 25(8): 1275-1283.

[本文引用: 2]

曾维特张金川丁文龙.

延长组陆相页岩气含气量及其主控因素——以鄂尔多斯盆地柳坪171井为例

[J]. 天然气地球科学, 2014, 25(2): 291-301.

[本文引用: 1]

ZENG W T, ZHANG J C, DING W L, et al.

The gas content of continental Yanchang shale and its main controlling factors: A case study of Liuping 171 Well in Ordos Basin

[J]. Natural Gas Geoscience, 2014, 25(2): 291-301.

[本文引用: 1]

腾格尔申宝剑俞凌杰.

四川盆地五峰组—龙马溪组页岩气形成与聚集机理

[J].石油勘探与开发, 2017, 44(1): 69-78.

[本文引用: 2]

TENGER, SHEN B J, YU L J, et al.

Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China

[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.

[本文引用: 2]

申宝剑仰云峰腾格尔.

四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1 井五峰—龙马溪组为例

[J]. 石油实验地质, 2016, 38(4): 480-488.

[本文引用: 1]

SHEN B J, YANG Y F, TENGER, et al.

Characteristics and hydrocarbon significance of the organic matter in the Jiaoshiba structure, Sichuan Basin: A case study of the Wufeng-Longmaxi Formations in Well Jiaoye

[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488.

[本文引用: 1]

秦建中申宝剑陶国亮

优质烃源岩成烃生物与生烃能力动态评价

[J]. 石油实验地质,2014, 36(4): 465-472

[本文引用: 1]

QIN J Z, SHEN B J, TAO G L, et al.

Hydrocarbon forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks

[J]. Petroleum Geology & Experiment, 2014, 36(4): 465-472.

[本文引用: 1]

LOUKS R G, REED R M, RUPPEL S C, et al.

Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale

[J]. Journal of Sedimentary Research, 2009, 79: 848-865.

[本文引用: 2]

MASTALERZ M, DROBNIAKA A, STANKIEWICZB A B.

Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review

[J]. International Journal of Coal Geology, 2018, 195: 14-36.

[本文引用: 1]

ROSS D J K, BUSTIN R M.

Shale gas potential of the Lower Jurassic Gordondale member, northeastern British Columbia, Canada

[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.

[本文引用: 1]

ROSS D J K, BUSTIN R M.

Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation

[J]. AAPG Bulletin, 2008, 92(1):87-125.

[本文引用: 1]

DEMAISON G J, MOORE G T.

Anoxic environments and oil source bed genesis

[J]. Organic Geochemistry, 1980, 2(1):9-31.

[本文引用: 1]

RIMMER S M.

Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)

[J]. Chemical Geology, 2004, 206(3-4): 373-391.

[本文引用: 2]

KATZ B J. Controlling factors on source rock development—a review of productivity, preservation, and

sedimentation rate

[C]∥Harris N B. The Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences. SEPM, Special Publication82, 2005: 7-16.

[本文引用: 1]

GALLEGO-TORRES D F, MARTINEZ-RUIZ, PAYTAN A, et al.

Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 246(2-4): 424-439.

[本文引用: 1]

BLAIR N E, AALLER R C.

The fate of terrestrial organic carbon in the marine environment

[J]. Annual Review of Marine Science, 2012, 4(1): 401-423.

[本文引用: 1]

严德天王清晨陈代钊.

扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素

[J].地质学报,200882(3): 322-327.

[本文引用: 1]

YAN D T, WANG Q C, CHEN D Z, et al.

Sedimentary environment and development controls of the hydrocarbon sources beds: The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze area

[J]. Acta Geologica Sinica, 2008, 82(3): 322-327.

[本文引用: 1]

李双建肖开华沃玉进.

南方海相上奥陶统—下志留统优质烃源岩发育的控制因素

[J].沉积学报,2008, 26(5): 872-880.

[本文引用: 2]

LI S J, XIAO K H, WO Y J, et al.

Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China

[J].Acta Sedimentologica Sinica, 2008,26(5): 872-880.

[本文引用: 2]

WEI H, CHEN D, WANG J, et al.

Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86.

[本文引用: 1]

SCHOEPFER S D, SHEN J, WEI H, et al.

Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity

[J]. Earth-Science Reviews, 2014, 149:23-52.

[本文引用: 1]

李艳芳邵德勇吕海刚.

四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系

[J]. 石油学报,201536(12):1470-1483.

[本文引用: 1]

LI Y F, SHAO D Y, LV H G, et al.

A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation- Longmaxi Formation Sichuan Basin

[J].Acta Petrolei Sinica, 2015, 36(12): 1470-1483.

[本文引用: 1]

邱振董大忠卢斌,.

中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨

[J]. 沉积学报, 2016, 346): 1011-1020.

[本文引用: 1]

QIU Z, DONG D Z, LU B, et al.

Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China

[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1011-1020.

[本文引用: 1]

邱振邹才能李熙喆

论笔石对页岩气源储的贡献:以华南地区五峰组—龙马溪组笔石页岩为例

[J]. 天然气地球科学, 2018, 29(5): 606-615.

[本文引用: 1]

QIU Z, ZOU C N, LI X Z, et al.

Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China

[J]. Natural Gas Geoscience, 2018, 29(5): 606-615.

[本文引用: 1]

RAN B, LIU S, JANSA L, et al.

Origin of the Upper Ordovician-Lower Silurian cherts of the Yangtze block, South China, and their palaeogeographic significance

[J]. Journal of Asian Earth Sciences, 2015, 108: 1-17.

[本文引用: 1]

LU B, QIU Z, ZHANG B, et al.

Geochemical characteristics and geological significance of the bedded chert during the Ordovician and Silurian transition in the Shizhu area, Chongqing, South China

[J]. Canadian Journal of Earth Sciences, 2019, 56(4):419-430.

[本文引用: 1]

LI Y, ZHANG T, ELLIS G S, et al.

Increased productivity as a primary driver of marine anoxia in the Lower Cambrian

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466: 252-264.

[本文引用: 1]

MURRAY R W, LEINEN M.

Chemical transport to the seafloor of the equatorial Pacific ocean across a latitudinal transect at 135W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the intertropical convergence zone

[J]. Geochimica et Cosmochimica Acta, 1993, 57(17): 4141-4163.

[本文引用: 1]

ALGEO T J, KUWAHARAK, SANO H, et al.

Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 308(1-2): 65-83.

[本文引用: 1]

LIU K, FENG Q L, SHEN J, et al.

Increased productivity as a primary driver of marine anoxia in the Lower Cambrian

[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018, 491: 1-9.

[本文引用: 1]

赵建华金振奎耿一凯.

四川盆地龙马溪组富有机质页岩形成主控因素

[J]. 大庆石油地质与开发, 2016, 35(2): 140-147.

[本文引用: 1]

ZHAO J H, JIN Z K, GENG Y K, et al.

Main controlling factors for Longmaxi Formation organic matter-rich shale in Sichuan Basin

[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(2): 140-147.

[本文引用: 1]

邱振卢斌陈振宏.

火山灰沉积与页岩有机质富集关系探讨——以五峰组—龙马溪组含气页岩为例

[J]. 沉积学报, 2019. .

URL     [本文引用: 1]

QIU Z, LU B, CHEN Z H, et al.

Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin

[J]. Acta Sedimentologica Sinica, 2019..

URL     [本文引用: 1]

JONES B, MANNING D A C.

Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones

[J]. Chemical Geology,1994, 111(1-4): 111-129.

[本文引用: 2]

KIMURA H, WATANABE Y.

Oceanic anoxia at the Precambrian-Cambrian boundary

[J]. Geology, 2001, 29(11): 995-998.

[本文引用: 1]

ZOU C N, QIU Z, WEI H Y, et al.

Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.

[本文引用: 1]

POULTON S W, CANFIELD D E.

Ferruginous conditions: A dominant feature of the ocean through earth’s history

[J].Elements, 2011, 7: 107-112.

[本文引用: 1]

SCOTT C, LYONS T W.

Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies

[J]. Chemical Geology, 2012, 324-325: 19-27.

[本文引用: 1]

邱振邹才能.

非常规油气沉积学:内涵与展望

[J]. 沉积学报,2020381):1-29..

URL     [本文引用: 1]

QIU Z, ZOU C.

Unconventional Petroleum Sedimentology: Connotation and prospect

[J]. Acta Sedimentologica Sinica, 2020381):1-29. .

URL     [本文引用: 1]

李双建袁玉松孙炜, .

四川盆地志留系页岩气超压形成与破坏机理及主控因素

[J].天然气地球科学,2016,27(5):924-931.

[本文引用: 1]

LI S J, YUAN Y S, SUN W, et al.

The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin

[J]. Natural Gas Geoscience, 2016, 27(5): 924-931.

[本文引用: 1]

孙博邓宾刘树根.

多期叠加构造变形与页岩气保存条件的相关性——以川东南焦石坝地区为例

[J]. 成都理工大学学报:自然科学版,2018, 45(1): 109-120.

[本文引用: 1]

SUN B, DENG B, LIU S G, et al.

Discussion on correlation between multistage superimposed tectonic deformation and shale gas preservation conditions in the Jiaoshiba shale gas field, Sichuan, China

[J].Journal of Chengdu University of Technology:Science & Technology Edition, 2018, 45(1): 109-120.

[本文引用: 1]

/