天然气地球科学 ›› 2020, Vol. 31 ›› Issue (2): 163–175.doi: 10.11764/j.issn.1672-1926.2019.11.003

• 非常规天然气 • 上一篇    下一篇

中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素

邱振1,2,3(),邹才能1,2,3,王红岩1,2,3,董大忠1,2,3,卢斌1,2,3,陈振宏1,2,3,刘德勋1,2,3,李贵中1,2,3,刘翰林1,何江林4,魏琳5   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油非常规油气重点实验室,河北 廊坊 065007
    3.国家能源页岩气研发(实验)中心,河北 廊坊 065007
    4.中国地质调查局成都地质调查中心,四川 成都 610082
    5.中国地质大学(北京)能源学院,北京 100083
  • 收稿日期:2019-09-29 修回日期:2019-11-14 出版日期:2020-02-10 发布日期:2019-12-03
  • 作者简介:邱振(1984-),男,安徽亳州人,高级工程师,博士后,主要从事非常规油气沉积学、非常规油气地质与资源评价等方面研究.E-mail: qiuzhen316@163.com.
  • 基金资助:
    国家自然科学基金项目(41602119);国家科技重大专项(2017ZX05035001);中国石油科学研究与技术开发项目(2016B-0302-01)

Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China

Zhen QIU1,2,3(),Cai-neng ZOU1,2,3,Hong-yan WANG1,2,3,Da-zhong DONG1,2,3,Bin LU1,2,3,Zhen-hong CHEN1,2,3,De-xun LIU1,2,3,Gui-zhong LI1,2,3,Han-lin LIU1,Jiang-lin HE4,Lin WEI5   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    2.CNPC Key Laboratory of Unconventional Oil and Gas, Langfang 065007, China
    3.National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China
    4.Chengdu Center, China Geological Survey, Chengdu 610082, China
    5.School of Energy Resource, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2019-09-29 Revised:2019-11-14 Online:2020-02-10 Published:2019-12-03
  • Supported by:
    National Natural Science Foundation of China(41602119);National Key Basic Research Program of China(2017ZX05035001);PetroChina Research Program(2016B-0302-01)

摘要:

中国南方地区五峰组—龙马溪组页岩气2019年产量154×108 m3,已成为全球第二大页岩气产区。基于来自中国南方威远、长宁、涪陵及巫溪等地区典型钻井与露头剖面的1 000余件五峰组—龙马溪组页岩样品数据,综合分析页岩气差异富集特征,探讨其主要控制因素。研究表明我国南方五峰组—龙马溪组页岩气在纵向上和区域上均具有一定差异富集特征,具体表现在:纵向上集中发育甜点段,区域上甜点段厚度、含气量、TOC含量等关键参数存在着较大变化,其中长宁与涪陵地区较优;不同地区的五峰组—龙马溪组页岩含气量与TOC含量均具有较好正相关性,指示着有机质丰度(TOC含量)是影响页岩气富集程度(含气量)的关键因素;五峰组—龙马溪组页岩沉积时期的海洋表层水体总体高生产力,是有机质大量生成的重要前提条件;在断裂带发育较弱的构造稳定区域,硫化缺氧的水体条件是控制页岩气纵向上甜点段及区域上甜点区形成的关键因素,即页岩气差异富集的关键因素。

关键词: 非常规油气沉积学, 甜点段(区), 海相页岩, 龙马溪组, 四川盆地

Abstract:

In 2019, the annual output of Wufeng-Longmaxi formations shale gas in South China reached 154×108 m3, making China the largest shale gas production region outside North America. Based on data of about 1 000 Wufeng-Longmaxi formations shale samples collected from typical cores and outcrops of Weiyuan, Changning, Fuling and Wuxi areas in South China, characteristics of differential enrichment of shale gas were analyzed, and its controlling factors were discussed. It is concluded that enrichments of Wufeng-Longmaxi formations shale gas in South China show differential vertically and laterally, respectively. In vertical orientation, the sweet-spot intervals of shale gas developed concentratedly, and the thicknesses, gas and TOC contents varied largely in different regions, of which in Changning and Fuling are high quality. For these four areas of shale gas exploration or development, gas contents are well correlated with TOC contents, suggesting that organic matter abundance is one of key factors controlling the enrichment of shale gas. When the Wufeng-Longmaxi formations shale deposited, the ocean surface had high productivity in general, providing prerequisites for formation of abundant organic matter. However, in the relatively stable tectonic zone, euxinic bottom water condition is the key factor controlling the formation of the sweet-spot interval of shale gas vertically and the distribution of sweet-spot area laterally, that is the key factor for differential enrichment of Wufeng-Longmaxi formations shale gas.

Key words: Unconventional petroleum sedimentology, Sweet-spot interval (area), Marine shale, Longmaxi Formation, Sichuan Basin

中图分类号: 

  • TE132.2

图1

中国南方五峰组—龙马溪组页岩分布及主要页岩气勘探开发区域分布(区域地质修改自文献[16,17];主要勘探矿权区修改自文献[18])"

图2

中国南方五峰组—龙马溪组页岩气主要勘探开发区有利(富集)段分布特征(修改自文献[4],部分数据引自文献[1, 8, 13])"

图3

中国南方五峰组—龙马溪组页岩气主要勘探开发区甜点段分布特征(部分数据引自文献[1, 8, 13])"

图4

中国南方五峰组—龙马溪组页岩气非富集段(a)、有利富集段(含甜点段)(b)、甜点段(c)含气量分布(部分数据引自文献[1, 7-9, 11-13, 19, 29])"

图5

中国南方不同区域(典型井)五峰组—龙马溪组页岩气有利(富集)段(a)、甜点段(b)含气量差异分布"

图6

中国南方五峰组—龙马溪组页岩气非富集段(a)、有利富集段(含甜点段)(b)、甜点段(c)TOC含量分布(部分数据引自文献[1, 7-9, 11-13, 19, 32])"

图7

中国南方不同区域(典型井)五峰组—龙马溪组页岩气有利(富集)段(a)、甜点段(b)的TOC含量差异分布"

图8

中国南方不同区域(典型井)五峰组—龙马溪组页岩气含气量与TOC含量相关性分析(部分数据引自文献[1, 7-9, 11-13, 19, 29])"

图9

中国南方五峰组—龙马溪组不同层段TOC含量与古生产力指标Babio(a)、缺氧条件指标U/Th(b)和V/Cr(c)及交会图(部分数据引自文献[17, 32, 50, 53, 62])"

图10

中国南方不同区域五峰组—龙马溪组底部页岩沉积水体缺氧条件演化分布(修改自文献[32])"

1 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J].Petroleum Exploration and Development, 2015, 42(6): 689-701.
2 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA C Z. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum exploration and Development, 2017, 44(1): 1-11.
3 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5): 803-810.
JIAO F Z. Re-recognition of “unconventional” in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810.
4 QIU Z, ZOU C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2019, in press. .
5 梁兴,王高成,徐政语,等. 中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例[J].天然气工业, 2016, 36(1): 33-42.
LIANG X, WANG G C, XU Z Y, et al. Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains,South China: A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 2016, 36(1): 33-42.
6 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 1-14.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 1-14.
7 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 1-9.
MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-9.
8 郭旭升,胡东风,魏志红,等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37.
GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
9 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
GUO X S. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(1): 1-10
10 郑述权,谢祥锋,罗良仪,等. 四川盆地深层页岩气水平井优快钻井技术——以泸203井为例[J]. 天然气工业,2019, 39(7): 88-93.
ZHENG H Q, XIE X F, LUO L Y, et al. Fast and efficient drilling technologies for deep shale gas horizontal wells in the Sichuan Basin: A case study of Well Lu 203[J]. Natural Gas Industry, 2019, 39(7): 88-93.
11 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
12 郭旭升. 南方海相页岩气"二元富集"规律:四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO X S. Rules of two-factor enrichment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
13 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016, 23(1): 1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10
14 何治亮,聂海宽,张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016, 23(2): 8-17.
HE Z L, NIE H K, ZHANG Y Y. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
15 翟刚毅,王玉芳,包书景,等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068.
ZHAI G Y, WANG Y F, BAO S J, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
16 CHEN X, RONG J Y, LI Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204: 353-372
17 邱振,江增光,董大忠,等.巫溪地区五峰组—龙马溪组页岩有机质沉积模式[J]. 中国矿业大学学报, 2017, 46(5):923-932.
QIU Z, JIANG Z G, DONG D Z, et al.Organic matter enrichment model of the shale in Wufeng-Longmachi Formation of Wuxi area[J]. Journal of China University of Mining & Technology, 2017, 46(5):923-932.
18 国土资源部中国地质调查局. 中国页岩气资源调查报告[R]. 2015-01-23.http:∥www.cgs.gov.cn/xwl/ddyw/201603/t2016 0309_302195.html.
China Geological Survey. Report on shale gas resources in China[R].2015-01-23.http://www.cgs.gov.cn/xwl/ddyw/201603/ t20160309_302195.html.
19 雷丹凤,李熙喆,位云生,等. 海相页岩有效产气储层特征—以四川盆地五峰组—龙马溪组页岩为例[J].中国矿业大学学报, 2019, 46(5): 923-932.
LEI D F, LI X Z, WEI Y S, et al. Characteristics of effective gas-producing reservoir in marine shale: A case study of the Wufeng-Longmaxi shales in Sichuan Basin[J]. Journal of China University of Mining & Technology,2019,46(5): 923-932.
20 SHURR G W, RIDGLEY J L. Unconventional shallow biogenic gas system[J]. AAPG Bulletin, 2002, 86(11), 1939-1969.
21 KLETT T R, CHARPENTIER R R. Forspan Model User’s Guide[R]. U.S. Geological Survey Open-File Report,2003, 03-384. http://pubs.usgs.gov/of/2003/ofr-03-354/.
22 POLLASTRO R M. Total petroleum system assessment of undiscovered resources in the giant Barnett shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91: 551-578.
23 邱振,邹才能,李建忠, 等. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学, 2013, 24(2): 238-246.
QIU Z, ZOU C N, LI J Z, et al. Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 2013, 24(2):238-246.
24 杨智,侯连华,陶士振,等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发,2015,42(5):555-565.
YANG Z, HOU L H, TAO S Z, et al. Formation conditions and “sweet spot ” evaluation of tight oil and shale oil [J]. Petroleum Exploration and Development,2015,42(5):555-565.
25 陈桂华,白玉湖,陈晓智,等.页岩油气纵向综合甜点识别新方法及定量化评价[J]. 石油学报,2016, 37(11):1337-1342.
CHEN G, BAI X, CHEN X, et al. A new identification method for the longitudinal intergrated shale oil/gas sweet spot and its quantitative evaluation[J]. Acta Petrolei Sinica, 2016, 37(11):1337-1342.
26 徐政语,梁兴,王维旭,等. 上扬子区页岩气甜点分布控制因素探讨: 以上奥陶统五峰组—下志留统龙马溪组为例[J].天然气工业, 2016, 36(9): 16-24.
XU Z Y, LIANG X, WANG W X, et al. Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region: A case study of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 16-24.
27 赵贤正, 蒲秀刚, 韩文中, 等. 细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发, 2017, 44(4): 492-502.
ZHAO X Z, PU X G, HAN W Z, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502.
28 周立宏,蒲秀刚,陈长伟,等,陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例[J].地球科学,2018, 43(10): 3625-3639.
ZHOU L H, PU X G, CHEN C W, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639.
29 张汉荣. 川东南地区志留系页岩含气量特征及其影响因素[J]. 天然气工业,2016, 36(8): 36-42.
ZHANG H R. Gas content of the Silurian shale in the SE Sichuan Basin and its controlling factors[J]. Natural Gas Industry, 2016, 36(8): 36-42.
30 周尚文,王红岩,薛华庆,等. 页岩含气量现场测试中损失气量的计算方法对比分析[J]. 中国科技论文, 2018, 13(21): 2453-2460.
ZHOU S W, WANG H Y, XUE H Q, et al. Comparative analysis of calculation methods for lost gas in the field-test of shale gas content[J].China Science Paper, 2018, 13(21):2453-2460.
31 李玉喜,乔德武,姜文利,等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报, 2011, 30(2): 308-317.
LI Y X, QIAO D W, JIANG W L, et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 2011, 30(2): 308-317.
32 ZOU C N, QIU ZHEN, POUTON S W, et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.
33 ZHANG T, ELLIS G S, RUPPE S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.
34 张琴,刘洪林,拜文华,等. 渝东南地区龙马溪组页岩含气量及其主控因素分析[J].天然气工业,2013, 33(5): 35-39.
ZHANG Q,LIU H L, BAI W H, et al. Shale gas content and its main controlling factors in Longmaxi shales in southeastern Chongqing[J]. Natural Gas Industry, 2013, 33(5): 35-39.
35 毕赫,姜振学,李鹏,等. 渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响[J]. 天然气地球科学, 2014, 25(8): 1275-1283.
BI H, JIANG Z X, LI P, et al. Shale reservoir characteristcs and its influence on gas content of Wufeng-Longmaxi Formation in the southeastern Chongqing[J]. Natural Gas Geoscience, 2014, 25(8): 1275-1283.
36 曾维特,张金川,丁文龙,等. 延长组陆相页岩气含气量及其主控因素——以鄂尔多斯盆地柳坪171井为例[J]. 天然气地球科学, 2014, 25(2): 291-301.
ZENG W T, ZHANG J C, DING W L, et al. The gas content of continental Yanchang shale and its main controlling factors: A case study of Liuping 171 Well in Ordos Basin[J]. Natural Gas Geoscience, 2014, 25(2): 291-301.
37 腾格尔,申宝剑,俞凌杰,等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J].石油勘探与开发, 2017, 44(1): 69-78.
TENGER, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
38 申宝剑,仰云峰,腾格尔,等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1 井五峰—龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488.
SHEN B J, YANG Y F, TENGER, et al. Characteristics and hydrocarbon significance of the organic matter in the Jiaoshiba structure, Sichuan Basin: A case study of the Wufeng-Longmaxi Formations in Well Jiaoye[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488.
39 秦建中,申宝剑,陶国亮,等.优质烃源岩成烃生物与生烃能力动态评价[J]. 石油实验地质,2014, 36(4): 465-472
QIN J Z, SHEN B J, TAO G L, et al. Hydrocarbon forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks[J]. Petroleum Geology & Experiment, 2014, 36(4): 465-472.
40 LOUKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79: 848-865.
41 MASTALERZ M, DROBNIAKA A, STANKIEWICZB A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36.
42 ROSS D J K, BUSTIN R M. Shale gas potential of the Lower Jurassic Gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.
43 ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation [J]. AAPG Bulletin, 2008, 92(1):87-125.
44 DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1):9-31.
45 RIMMER S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391.
46 KATZ B J. Controlling factors on source rock development—a review of productivity, preservation, and sedimentation rate[C]∥Harris N B. The Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences. SEPM, Special Publication82, 2005: 7-16.
47 GALLEGO-TORRES D F, MARTINEZ-RUIZ, PAYTAN A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 246(2-4): 424-439.
48 BLAIR N E, AALLER R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423.
49 严德天,王清晨,陈代钊,等. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J].地质学报,2008,82(3): 322-327.
YAN D T, WANG Q C, CHEN D Z, et al. Sedimentary environment and development controls of the hydrocarbon sources beds: The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze area[J]. Acta Geologica Sinica, 2008, 82(3): 322-327.
50 李双建,肖开华,沃玉进,等. 南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J].沉积学报,2008, 26(5): 872-880.
LI S J, XIAO K H, WO Y J, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J].Acta Sedimentologica Sinica, 2008,26(5): 872-880.
51 WEI H, CHEN D, WANG J, et al. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86.
52 SCHOEPFER S D, SHEN J, WEI H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2014, 149:23-52.
53 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.
LI Y F, SHAO D Y, LV H G, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation- Longmaxi Formation Sichuan Basin[J].Acta Petrolei Sinica, 2015, 36(12): 1470-1483.
54 邱振,董大忠,卢斌,等. 中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨[J]. 沉积学报, 2016, 34(6): 1011-1020.
QIU Z, DONG D Z, LU B, et al. Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1011-1020.
55 邱振,邹才能,李熙喆,等.论笔石对页岩气源储的贡献:以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
QIU Z, ZOU C N, LI X Z, et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615.
56 RAN B, LIU S, JANSA L, et al. Origin of the Upper Ordovician-Lower Silurian cherts of the Yangtze block, South China, and their palaeogeographic significance[J]. Journal of Asian Earth Sciences, 2015, 108: 1-17.
57 LU B, QIU Z, ZHANG B, et al. Geochemical characteristics and geological significance of the bedded chert during the Ordovician and Silurian transition in the Shizhu area, Chongqing, South China[J]. Canadian Journal of Earth Sciences, 2019, 56(4):419-430.
58 LI Y, ZHANG T, ELLIS G S, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466: 252-264.
59 MURRAY R W, LEINEN M. Chemical transport to the seafloor of the equatorial Pacific ocean across a latitudinal transect at 135W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the intertropical convergence zone[J]. Geochimica et Cosmochimica Acta, 1993, 57(17): 4141-4163.
60 ALGEO T J, KUWAHARAK, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 308(1-2): 65-83.
61 LIU K, FENG Q L, SHEN J, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018, 491: 1-9.
62 赵建华,金振奎,耿一凯,等. 四川盆地龙马溪组富有机质页岩形成主控因素[J]. 大庆石油地质与开发, 2016, 35(2): 140-147.
ZHAO J H, JIN Z K, GENG Y K, et al. Main controlling factors for Longmaxi Formation organic matter-rich shale in Sichuan Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(2): 140-147.
63 邱振,卢斌,陈振宏,等. 火山灰沉积与页岩有机质富集关系探讨——以五峰组—龙马溪组含气页岩为例[J]. 沉积学报, 2019. .
QIU Z, LU B, CHEN Z H, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin [J]. Acta Sedimentologica Sinica, 2019..
64 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994, 111(1-4): 111-129.
65 KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11): 995-998.
66 ZOU C N, QIU Z, WEI H Y, et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.
67 POULTON S W, CANFIELD D E. Ferruginous conditions: A dominant feature of the ocean through earth’s history[J].Elements, 2011, 7: 107-112.
68 SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27.
69 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29..
QIU Z, ZOU C. Unconventional Petroleum Sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020,38(1):1-29. .
70 李双建,袁玉松,孙炜, 等.四川盆地志留系页岩气超压形成与破坏机理及主控因素[J].天然气地球科学,2016,27(5):924-931.
LI S J, YUAN Y S, SUN W, et al. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(5): 924-931.
71 孙博,邓宾,刘树根,等. 多期叠加构造变形与页岩气保存条件的相关性——以川东南焦石坝地区为例[J]. 成都理工大学学报:自然科学版,2018, 45(1): 109-120.
SUN B, DENG B, LIU S G, et al. Discussion on correlation between multistage superimposed tectonic deformation and shale gas preservation conditions in the Jiaoshiba shale gas field, Sichuan, China[J].Journal of Chengdu University of Technology:Science & Technology Edition, 2018, 45(1): 109-120.
[1] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[2] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[3] 肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.
[4] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[5] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
[6] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[7] 石书缘, 王铜山, 刘伟, 姜华, 李秋芬, 刘鑫, 曾乙洋, 邹翔, 胡丽. 四川盆地寒武系洗象池组储层特征及天然气勘探潜力[J]. 天然气地球科学, 2020, 31(6): 773-785.
[8] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[9] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[10] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[11] 王玉满, 李新景, 王皓, 吴伟, 蒋珊, 陈波, 沈均均, 周国晓. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学, 2020, 31(2): 151-162.
[12] 蔡珺君, 梁锋, 占天慧, 王俐佳, 唐青松, 邓庄, 甘笑非. 动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学, 2020, 31(1): 132-142.
[13] 杨威, 魏国齐, 李德江, 刘满仓, 谢武仁, 金惠, 沈珏红, 郝翠果, 王小丹. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学, 2020, 31(1): 1-12.
[14] 张天舒, 陶士振, 吴因业, 杨家静, 庞正炼, 杨晓萍, 陈燕燕, 袁苗, 刘敏, 范建玮, 冯荣昌. 层序演化对三角洲—滩坝沉积体系有利储层类型与分布的控制作用[J]. 天然气地球科学, 2019, 30(9): 1286-1300.
[15] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[5] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[6] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[7] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[8] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[9] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[10] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .