非常规天然气

南华北盆地下二叠统泥页岩孔隙特征及控制因素

  • 刘艳杰 , 1, 2, 3 ,
  • 程党性 4, 5 ,
  • 邱庆伦 2, 3 ,
  • 瓮纪昌 6 ,
  • 王晓瑜 2, 3 ,
  • 郭力军 7 ,
  • 李朋朋 8 ,
  • 鲁新川 , 8
展开
  • 1. 河南省地质科学研究所,河南 郑州 450001
  • 2. 河南省地质调查院,河南 郑州 450001
  • 3. 地下清洁能源勘查开发产业技术创新战略联盟,河南 郑州 450000
  • 4. 中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
  • 5. 低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
  • 6. 河南豫矿地质勘查投资有限公司,河南 郑州 450012
  • 7. 中国石油青海油田公司勘探开发研究院,甘肃 敦煌 736200
  • 8. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
鲁新川(1979-),男,山东曹县人,助理研究员,博士,主要从事沉积学研究. E-mail: .

刘艳杰(1979-),男,内蒙古赤峰人,工程师,主要从事地质调查研究. E-mail: .

收稿日期: 2020-05-25

  修回日期: 2020-06-30

  网络出版日期: 2020-09-30

Characteristics of pores and controlling factors of Lower Permian shales in Southern North China Basin

  • Yan-jie LIU , 1, 2, 3 ,
  • Dang-xing CHENG 4, 5 ,
  • Qing-lun QIU 2, 3 ,
  • Ji-chang WENG 6 ,
  • Xiao-yu WANG 2, 3 ,
  • Li-jun GUO 7 ,
  • Peng-peng LI 8 ,
  • Xin-chuan LU , 8
Expand
  • 1. Henan Institute of Geological Sciences,Zhengzhou 450001,China
  • 2. Henan Institute of Geological Survey,Zhengzhou 450001,China
  • 3. Henan Industry & Technology Innovation Strategy Alliance of Underground Clean Energy Exploration and Development,Zhengzhou 450000,China
  • 4. Research Institute of Exploration and Development,PetroChina Changqing Oilfieid Company,Xi’an 710018,China
  • 5. National Engineering Laboratory for Exploration and Development of Low⁃Permeability Oil & Gas Fields,Xi’an 710018,China
  • 6. Henan Yukuang Geological Exploration Investment Co. Ltd. ,Zhengzhou 450012,China
  • 7. Exploration and Development Research Institute,PetroChina Qinghai Oilfield Company,Dunhuang 736200,China
  • 8. Northweest Institute of Eco⁃Environment and Resources,CAS,Lanzhou 730000 China

Received date: 2020-05-25

  Revised date: 2020-06-30

  Online published: 2020-09-30

Supported by

The Major Scientific and Technological Projects in Henan Province, China (Grant No. 151100311000);The China National Science & Technology Major Project(Grant No. 2017ZX05001002-008);The Project of Academic Department of Chinese Academy of Sciences(Grant No. E0290803).

本文亮点

泥页岩孔隙特征研究是评估页岩气储集能力和评价页岩气开采可行性的关键一步。以南华北盆地MY1井下二叠统山西组和太原组泥页岩样品为研究对象,通过场发射扫描电镜(FE⁃SEM)、低温氮气吸附、X⁃射线衍射、等温吸附、有机碳(TOC)含量和镜质体反射率(R O)等实验手段,对南华北盆地下二叠统泥页岩孔隙特征及其控制因素进行了研究。结果表明:南华北盆地下二叠统泥页岩孔隙类型包括粒间孔、晶间孔、有机孔、黏土矿物聚合孔、矿物颗粒表面溶孔和微裂缝,其中黄铁矿粒间孔和黏土矿物聚合孔、有机-黏土矿物复合孔和有机质收缩缝比较发育,表面溶孔不发育;孔体积在0.004 0~0.052 8 cm3/g之间,平均值为0.019 6 cm3/g,比表面积在1.198 9~26.525 7 m2/g之间,平均值为9.506 2 m2/g。平均孔径在2.35~14.38 nm之间,平均值为8.68 nm。泥页岩孔体积和比表面积同步增加,但不同孔径段孔隙对孔体积和比表面积贡献有差异,比表面积主要由孔径小于10 nm的孔隙贡献,而孔径主要由孔径大于10 nm的孔隙贡献,孔体积和比表面积随孔径的增量曲线呈单峰分布。有机质含量和矿物类型及其含量共同制约着孔隙的发育。

本文引用格式

刘艳杰 , 程党性 , 邱庆伦 , 瓮纪昌 , 王晓瑜 , 郭力军 , 李朋朋 , 鲁新川 . 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学, 2020 , 31(10) : 1501 -1514 . DOI: 10.11764/j.issn.1672-1926.2020.06.011

Highlights

The key step in evaluating shale gas reservoir capacity and feasibility of shale gas exploitation is the research on pore characteristics of shale. By means of field emission electron microscopy, low temperature nitrogen adsorption, X-ray diffraction, organic carbon (TOC) content and vitrinite reflectance (R O), the paper investigates the pore characteristics and controlling factors of Permian shale from Well MY1 in Southern North China Basin. The results show that the pore types of Lower Permian shale are intergranular pores, inter-crystal pores, organic pores, dissolution pores on the surface of mineral particles and micro-fractures, in which inter-crystal pores of pyrite, intergranular pores of clay mineral polymer, organic-clay mineral combined pores and contraction joints of organic matters are relatively developed, and dissolution pores on the surface of mineral particles is not developed. Pore volume is in the range of 0.004 0~0.052 8 cm3/g, with a mean of 0.019 62 cm3/g; specific surface area ranges from 1.198 9 m2/g to 26.525 7 m2/g, on average of 9.506 m2/g; average pore diameter is within 2.35~14.38 nm, with an average of 8.68 nm. Pore volume and specific surface area of shales increase synchronously, while pores within different pore diameters makes different contributions to pore volume and specific surface area of shales, such as pores with pore size more than 10 nm mainly contribute to pore volume and with pore size less than 10 nm mainly contribute to specific surface area. Unimodal distributions for the incremental curves of pore volume and specific surface area with increasing pore diameter can be observed. The content of organic matter and the types of minerals and their respective contents jointly govern pore developed conditions.

0 引言

页岩气是指赋存于暗色页岩孔裂隙中的一种新型非常规天然气1。加大页岩气的勘探开发力度不仅能促进我国非常规油气资源的快速发展,而且对优化能源结构和确保国家能源供给安全有重大的战略意义2-4。目前,我国南方海相页岩气已实现商业化开发,但仅来源于唯一的经济页岩气层组(五峰组—龙马溪组),为了改变目前的现状,突破当前的单一层组,围绕海陆过渡相页岩层组的勘探工作逐渐成为热点领域,尤其是煤系经济页岩气层组,如山西组、太原组和本溪组等15-10。我国海陆过渡相页岩气资源丰富,约占页岩气资源量的1/311,且已在一些煤系经济页岩气层组获得稳定的页岩气流,如鄂页1井产量1.95×104 m3/d,云页1井产量2.00×104 m3/d和SMO-5井产量0.67×104 m3/d,展现出相对良好的勘探开发前景5。南华北盆地是海陆过渡相页岩气勘探的重点区域,但目前该区域研究程度相对较低。
纳米孔隙作为页岩气主要的赋存空间,控制着页岩的储集性能和气体的运移能力,故在评价页岩气藏时,研究纳米孔隙的分布特征及影响因素尤为重要12。表征纳米孔隙的手段可分为直接法和间接法,直接法包括扫描电镜、原子力显微镜、X⁃射线衍射计算机层系扫描等13-15,间接法包括压汞法、低温液氮/二氧化碳吸附、核磁共振等16-19。直接法可客观地表征孔隙的形态和大小;间接法,常用气体吸附法,可定量地表征纳米孔隙的分布特征。采用直接法和间接法联合测定的方式,可对页岩的孔隙特征进行有效表征。
前人研究证实,下二叠统太原组和山西组是南华北盆地重要的烃源岩1020-21。本文以南华北盆地中牟页岩气勘查区MY1井为例,对太原组和山西组泥页岩进行系统取样,基于取心样品有机地球化学和矿物特征分析,对太原组和山西组泥页岩的孔隙特征进行评价,为该区域页岩气勘探开发提供理论指导。

1 地质背景

南华北盆地主体位于河南省中南部,总面积大约为15×104 km2。南华北盆地属于华北板块南部及其与秦岭—大别造山带结合部,北以焦作—商丘断裂为界,南与栾川—确山—固始—肥中断裂和秦岭—大别造山带相邻,东与郯庐断裂和下扬子区接邻21。南华北盆地包含多个构造单元,从北向南依次有内黄隆起、临清坳陷、开封坳陷、豫西隆起、通许隆起、周口坳陷和长山隆起(图1)。中牟页岩气勘查区构造上地处通许隆起与开封坳陷接合部位,构造相对稳定,地层产状平缓。中牟页岩勘查区构造演化大体上经历了寒武纪—中奥陶世滨浅海相沉降盆地发育时期、晚奥陶世—泥盆纪克拉通古陆隆起剥蚀期、石炭纪—二叠纪海陆过渡相沉降盆地发育时期和三叠纪—第四纪陆相盆地发育时期5个演化阶段。其中,下二叠统太原组为3套灰岩夹2套黑色泥岩及煤层沉积组合,总体表现为海进退积序列,其中泥页岩段为澙湖相、灰岩段为局限台地相;而山西组下部主要为砂岩、上部总体为黑色泥岩与煤层,总体表现为海退进积序列,逐渐由前三角洲向三角洲前缘,最后发展为三角洲平原的演化历程9
图1 南华北盆地构造背景、地理位置及MY1井位置图(修改自文献[9])

Fig.1 Tectonic setting and geological map of the Well MY1 at the Southern North China Basin(modified by Ref.[9])

根据邻区钻井资料和区域露头揭示9-10,中牟页岩气勘查区地层主要发育下古生界中奥陶统马家沟组;上古生界上石炭统本溪组,下二叠统太原组和山西组,中上二叠统下石盒子组、上石盒子组、平顶山组和孙家沟组;中生界下三叠统和尚沟组、刘家沟组;新生界新近系馆陶组、明化镇组和第四系;缺失下石炭统和古近系。太原组厚度约为39~140 m,与下伏地层呈整合接触;岩性以深灰色—黑灰色泥岩、炭质泥岩、煤层与浅灰色砂岩不等厚互层,夹深灰色灰岩。山西组厚度约为40~100 m,与下伏地层呈整合接触;岩性为灰色、灰黑色泥岩与灰白色、浅灰色细砂岩略等厚互层,中部夹多层煤。根据MY1井钻井资料(图2),下二叠统太原组和山西组的井深分别为2 897.0~2 979.0 m(厚度为82 m)和2 806.0~2 897.0 m(厚度为91 m)。
图2 南华北盆地MY1井综合柱状图

Fig.2 The map of general column of Well MY1 at the Southern Northern China Basin

2 样品与研究方法

本研究系统采集钻井取心样品55件,均来自于河南省中牟页岩气勘查区MY1井下二叠统太原组和山西组,其岩性主要为泥页岩。所有样品均进行有机碳含量测试和场发射扫描电镜观测,34件样品进行矿物组成分析,36件样品进行低温液氮吸附实验,28件样品进行镜质组发射率测试。
矿物成分分析采用X-射线衍射(XRD),仪器参数为铜Kα辐射(CuKα1的λ=1.540 6),在3°~85°(2θ)范围内以4°/min的速率进行逐步扫描测量。总有机碳含量(TOC)测试采用LECO碳硫分析仪,测试前,样品需经盐酸处理去除碳酸盐矿物。镜质组反射率(R O)测试采用DM LPWITH MSP20镜质组反射率测定仪,参照GB6948—1986《煤的镜质组发射率测定方法》执行。
样品孔隙形貌特征观测采用Quanta 250FEG-SEM场发射扫描电镜。实验前,为了提高成像的质量,用氩离子剖光仪对样品表面进行剖光,确保样品表面光滑。
低温液氮吸附实验采用美国麦克公司生产的ASAP2020M型全自动比表面积和孔隙度分析仪,实验参照GB/T 21650.2—2008执行,将0.3 g粉碎至80目的页岩样品在110 °C的真空中自动脱气20 h,用来去除吸附的水分和挥发性物质18。然后通入高纯氮气,在一系列精确控制的气体压力下,将脱气后的样品暴露于-196 °C条件下进行氮气吸附和脱附实验,实验的相对压力范围为0.000 1~0.995,测试的孔径范围为1.7~300 nm。样品的孔体积和比表面积分别采用BJH和BET模型计算得到。孔径分布基于DFT模型计算得到。

3 结果分析

3.1 泥页岩有机碳含量和矿物组成特征

南华北盆地MY1井下二叠统山西组和太原组的有机质类型为III型。山西组泥页岩的TOC含量为0.44%~5.10%,平均为1.81%;而太原组泥页岩的TOC含量为1.15%~10.89%,平均为3.96%;太原组泥页岩TOC含量明显高于山西组。山西组泥页岩的R O值为3.02%~3.80%,平均为3.43%;太原组泥页岩的R O值为3.34%~3.74%,平均为3.55%;太原组和山西组泥页岩均为过成熟阶段,但太原组泥页岩的R O略高于山西组。
南华北盆地MY1井下二叠统山西组和太原组泥页岩矿物含量如图3所示。山西组泥页岩石英含量在21%~59%之间,平均为45%;黏土矿物含量在21%~70%之间,平均为46%;长石含量在0~19%之间,平均为4%;碳酸盐矿物含量在1%~18%之间,平均为4%;黄铁矿和石膏的平均含量约为1%。太原组泥页岩石英含量在2%~52%之间,平均为35%;黏土矿物含量在1%~64%之间,平均为36%;长石含量在0~7%之间,平均为3%;碳酸盐矿物含量在1%~95%之间,平均为25%;黄铁矿和石膏的平均含量约为4%(图3)。相比于太原组,山西组泥页岩的石英、长石和黏土矿物含量均较高,碳酸盐矿物、黄铁矿和石膏含量均较低。
图3 南华北盆地MY1井泥页岩矿物含量

Fig.3 The various mineral concentrations of shales of Well MY1 at the Southern Northern China Basin

3.2 孔隙分布特征

3.2.1 场发射扫描电镜观测结果

根据孔隙存在的状态和成因,孔隙可分为粒间孔、粒内孔、裂缝、矿物颗粒表面溶蚀孔、有机质孔及混合孔隙22-23。结合泥页岩样品的场发射扫描电镜的镜下特征,MY1井泥页岩孔隙类型包括晶间孔、粒间孔、溶蚀孔和有机质孔缝等(图4)。
图4 MY1井泥岩页的微观表面特征

(a) 黄铁矿晶间孔;(b) 黏土矿物—颗粒—有机质复合孔;(c)方解石边缘铸模孔;(d)石英表面的溶蚀孔;(e)有机质孔;(f)有机质收缩缝

Fig.4 Field emission scanning electron microscope images of shale pores of Well MY1 at Southern Northern China Basin

晶间孔是指矿物晶粒间的孔隙,这种类型孔隙的形态通常较规则,中牟页岩气勘查区以黄铁矿晶间孔最为常见[图4(a)]。粒间孔是指碎屑颗粒之间形成的孔隙,这种类型孔隙的形态较复杂,连通性相对较好;此外粒间孔也可存在黏土矿物的絮状物或有机质等韧性物质间[图4(b),图4(f)]。溶蚀孔是由于有机质演化产生的有机酸等使胶结物和矿物表面发生溶蚀而形成的孔隙[图4(c),图4(d)]。有机质孔是有机质在生烃过程中因生烃膨胀力作用下突破有机质表面而产生的孔隙,且发育程度与成熟度和有机质类型密切相关。相比于I型和II型干酪根,III型干酪根生油能力弱,故在生油窗阶段压实作用对孔隙的破坏作用更强2224。另一方面,随着成熟度的升高,有机孔发育规模因气体产物的大量生成而逐渐提高,但当R O值超过2.5%,因压实作用继续增强,有机质抵抗变形能力降低和碳化作用的加深,有机质内部孔隙逐渐坍塌导致有机孔数量迅速降低25。MY1井泥页岩的R O值均为3.00%且干酪根类型为III型,生油能力差且热成熟度高是南华北盆地下二叠统山西组和太原组泥页岩有机孔相对不发育的原因[图4(e)]。但有机质收缩缝非常发育,有机质微裂缝是有机质在生烃过程中收缩形成的裂缝,这种收缩缝可发育在有机质与矿物的结合处或有机质内部[图4(e),图4(f)]。MY1井泥页岩普遍发育有机质微裂缝,这是泥页岩生烃的证据之一。有机质收缩缝不仅为气体的储存提供空间,还可以作为气体运移的通道。

3.3 低温液氮吸附实验

3.3.1 吸附—脱附曲线

低温液氮吸附—脱附曲线一定程度上可以反映出孔隙的形态18。选取下二叠统山西组和太原组具有代表性的样品,对吸附—脱附曲线进行对比研究。从图5可以得出,下二叠统山西组和太原组泥页岩的低温液氮吸附/脱附曲线的形态基本一致,这表明孔隙的类型大致相同。根据美国化学联合会(IUPAC)的分类方案26,几乎所有样品的吸附—解吸曲线符合II型特征,孔隙以两端开口的平行板状孔为主。当相对压力在0.5~1.0之间,吸附曲线和脱附曲线出现典型的“滞后环”,这是由于毛细凝聚现象所致,表明相应孔径段开放孔发育;当相对压力在0.2~0.5之间,吸附曲线和脱附曲线不重合,这是由于高热成熟度样品吸附能力强,吸附膨胀引起不可逆的氮气吸收作用所致;当相对压力在0.4~0.5之间,脱附曲线并未出现吸附量“突降”现象,这意味着“墨水瓶孔”不发育18
图5 低温液氮吸附—脱附曲线

Fig.5 Low temperature liquid N2 adsorption/desorption isotherms

3.3.2 孔隙结构参数

表1展示了下二叠统山西组和太原组泥页岩样品的孔隙结构参数。孔体积在0.004 0~0.052 8 cm3/g之间,平均值为0.019 6 cm3/g。比表面积在1.198 9~26.525 7 m2/g之间,平均值为9.5062 m2/g。平均孔径在2.35~14.38 nm之间,平均值为8.68 nm。山西组和太原组泥页岩样品的孔隙结构参数的差异较小。总体上,孔体积和比表面积呈正相关(图6),平均孔径与孔体积呈正相关,但与比表面积呈负相关(图7),这表明孔体积与比表面积同步增长,但不同孔径段对孔体积和比表面积贡献有差异,比表面积主要由小孔径段孔隙贡献,而孔体积主要由大孔径段孔隙贡献。结合孔体积和比表面积随孔径的增量曲线(图8),比表面积主要由孔径小于10 nm的孔隙贡献,而体积主要由孔径大于10 nm的孔隙贡献,而且孔体积和比表面积随孔径的增量曲线呈单峰分布。
表1 孔隙结构参数测定结果

Table 1 Results of pore structural parameters

样品编号 孔体积/(cm3/g) 比表面积/(cm2/g) 平均孔径/nm 样品编号 孔体积/(cm3/g) 比表面积/(cm2/g) 平均孔径/nm
JY-1 0.008 7 2.704 4 12.85 JY-25 0.009 3 4.104 5 9.08
JY-2 0.008 9 5.441 3 6.55 JY-26 0.020 0 11.996 9 6.66
JY-3 0.010 7 4.708 5 9.08 JY-27 0.033 1 19.079 7 6.94
JY-4 0.012 4 4.382 1 11.35 JY-28 0.023 0 10.444 1 8.81
JY-6 0.018 4 8.738 8 8.41 JY-32 0.033 0 19.230 8 6.86
JY-7 0.018 0 8.879 9 8.12 JY-33 0.052 8 26.525 7 7.96
JY-8 0.016 9 6.444 2 10.02 JY-34 0.010 9 16.638 7 2.35
JY-9 0.016 0 5.388 3 11.36 JY-38 0.031 3 8.429 3 14.38
JY-10 0.013 5 5.648 3 9.55 JY-39 0.009 8 6.947 3 3.86
JY-11 0.019 3 7.051 9 10.94 JY-41 0.036 9 13.319 1 10.76
JY-12 0.013 7 5.788 3 9.43 JY-42 0.004 0 1.198 9 11.82
JY-13 0.016 0 7.789 4 8.19 JY-45 0.017 2 6.655 6 9.93
JY-14 0.012 3 7.219 7 6.85 JY-48 0.017 7 8.803 5 7.87
JY-16 0.009 6 5.834 1 6.60 JY-50 0.009 2 3.044 9 11.59
JY-17 0.011 1 6.113 8 7.25 JY-52 0.021 3 11.931 0 7.24
JY-19 0.014 1 10.876 5 5.18 JY-53 0.026 0 10.545 0 9.36
JY-22 0.028 1 11.494 7 9.52 JY-54 0.033 3 16.270 2 8.15
JY-23 0.021 3 6.904 2 11.46 JY-55 0.030 6 16.938 6 6.83

注:JY-1至JY-34为山西组,JY-38至JY-55为太原组

图6 孔体积与比表面积关系

Fig. 6 Plot of pore volume and specific surface area

图7 平均孔径与孔体积和比表面积关系

Fig. 7 Plots of average pore diameter versus pore volume and specific surface area

图8 孔体积和比表面积随孔径增量曲线

Fig. 8 Increaments of pore volume and specific surface area as a function of pore diameter

4 泥页岩孔隙发育影响因素

4.1 TOC含量

泥页岩孔隙发育程度本质上受控于泥页岩的物质组成。泥页岩是有机质和各种矿物的集合体。图9展示了泥页岩物质组成与孔体积和比表面积的关系。当TOC含量低于5.0%,孔体积和比表面积整体上随着TOC含量的增加呈增大的趋势,这表明TOC含量对孔隙发育有积极作用。TOC含量是衡量有机质生烃能力的重要指标,有机质在热成熟过程中会生成大量的微纳米孔隙26-27。通常,TOC含量越高,生成的纳米孔隙数量越多,其相对应的孔体积和比表面积越大。太原组TOC含量高于5.0%的3个数据点,均与沉积的煤层相邻。由于TOC含量较高,在热演化过程中生成大量的有机孔,伴随着压实作用的增强,有机质内部孔隙逐渐坍塌导致有机孔的数量减少25,此外,一些塑形的黏土矿物在有机孔发生形变后充填于孔隙中[图4(b),图4(e),图4(f)],这两者均会导致相应的孔体积和比表面积降低,这和场发射扫描电镜镜下观察到有机孔不发育和有机孔/黏土矿物复合孔较发育的现象相吻合。
图9 泥页岩物质组成与孔体积、比表面积和兰氏体积的关系

Fig. 9 Plots of shale compositions versus pore volume, specific surface area and Langmuir volume

4.2 矿物组成

本次研究的南华北盆地山西组和太原组泥页岩的矿物类型主要为石英和黏土矿物。黏土矿物具有特殊的层状晶体结构,在矿物颗粒内部、矿物颗粒之间以及晶层之间会形成一些孔隙,不同类型黏土矿物孔隙的孔径分布有较大差异,如蒙脱石微孔最发育,伊/蒙混层次之,高岭石发育中大孔,伊利石和绿泥石发育微米级孔隙28。随着黏土矿物含量的增加,孔体积和比表面积整体上呈现降低的趋势(图9)。这是因为研究区黏土矿物主要以伊利石为主(图10),伊利石的晶体颗粒相对较大,主要发育微米级孔隙,而低温液氮测定的孔径范围在1.7~300 nm之间,伊利石对孔体积和比表面积的贡献并未被考虑。石英属于相对稳定的矿物,孔隙通常不发育,故孔体积和比表面积均随着石英含量的增加而呈现降低的趋势。长石与孔体积和比表面积呈两段式分布,当长石含量低于8 %,孔体积和比表面积随着长石含量的增加呈增加的趋势;当长石含量高于8%时,孔体积和比表面积随着长石含量的增加显著降低。水岩模拟实验已证实,有机质在热成熟过程中会生成有机酸,有机酸能溶蚀矿物形成次生孔隙29。由于长石在地层条件下易被溶蚀,长石含量较低时,孔隙未被完全填充,这为酸性流体溶蚀长石提供可能,而且被溶蚀产生的次生孔隙对气体的赋存有积极意义;但当长石含量过高,孔隙被完全充填,在这种情况下,酸性流体溶蚀长石是非常困难的。孔体积和比表面积与碳酸盐含量呈正相关,这表明碳酸盐孔隙相对较发育。孔体积和比表面积随着石膏含量的增加显著降低,这意味着石膏对孔隙填充的负效应显著。随着黄铁矿含量的增加,孔体积和比表面积整体上呈现降低的趋势。黄铁矿与有机质伴生现象普遍(图11),在鄂尔多斯盆地延长组和四川盆地龙马溪组也观察到这种现象2630。尽管黄铁矿在生长过程中会形成一些晶间孔[图4(a)],但相比于黄铁矿自身占据有机质的孔隙空间,形成的晶间孔对整体的孔体积和比表面积的贡献较小,故导致泥页岩的孔隙空间整体上呈减小的趋势。
图10 南华北盆地MY1井泥页岩黏土矿物含量

Fig.10 The various clay mineral concentrations of shales of Well MY1 at the Southern North China Basin

图11 黄铁矿和有机质伴生现象

Fig. 11 Pyrite associated with organic matter

5 结论

(1)南华北盆地下二叠统太原组和山西组泥页岩孔隙有粒间孔、晶间孔、有机孔、黏土矿物聚合孔、矿物颗粒表面溶孔和微裂缝,其中粒间孔和黏土矿物的聚合孔比较发育。
(2)南华北盆地下二叠统太原组和山西组泥页岩孔体积在0.004 0~0.052 8 cm3/g之间,平均值为0.019 6 cm3/g;比表面积在1.198 9~26.525 7 m2/g之间,平均值为9.506 2 m2/g;平均孔径在2.35~14.38 nm之间,平均值为8.68 nm。泥页岩孔体积和比表面积同步增加,但不同孔径段孔隙对孔体积和比表面积贡献有差异,比表面积主要由孔径小于10 nm的孔隙贡献,而孔体积主要由大于10 nm的孔隙贡献。
(3)南华北盆地下二叠统太原组和山西组孔隙发育特征本质上受控于泥页岩的物质组成。当TOC含量低于5%,孔体积和比表面积随着TOC含量增加而增大。随着黏土矿物、石英、黄铁矿和石膏含量的增加,孔体积和比表面积整体上呈减小的趋势。孔体积和比表面积与长石的含量呈“倒V”字形关系,而与碳酸盐的含量呈正相关关系。
篇名 作者 发表年卷期 SCI被引次数
Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage: Taking Longmaxi Formation in Well JY1 as an Example Guo Tonglou, Liu Ruobing 2013,24(4) 67
Significant Function of Coal-derived Gas Study for Natural Gas Industry Development in China Dai Jinxing, Ni Yunyan, Huang Shipeng, Liao Fengrong, Yu Cong, Gong Deyu, Wu Wei 2014,25(1) 30
Cause and Significance of the Ultra-low Water Saturation in Gas-enriched Shale Reservoir Fang Chaohe, Huang Zhilong, Wang Qiaozhi, Zheng Dewen, Liu Honglin 2014,25(3) 29
Micro-pores Structure Characteristics and Development Control Factors of Shale Gas Reservoir:A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou Wei Xiangfeng,Liu Ruobing,Zhang Tingshan,Liang Xing 2013,24(5) 27
The Genesis of Quartz in Wufeng-Longmaxi gas Shales,Sichuan Basin Zhao Jianhua, Jin Zhijun, Jin Zhenkui, Wen Xin, Geng Yikai, Yan Caina 2016,27(2) 23
Main Types,Geological Features and Resource Potential of Tight Sandstone Gas in China Li Jianzhong, Guo Bincheng, Zheng Min, Yang Tao 2012,23(4) 22
The Gas Content of Continental Yanchang Shale and Its Main Controlling Factors: A Case Study of Liuping-171 Well in Ordos Basin Zeng Weite, Zhang Jinchuan, Ding Wenlong, Wang Xiangzeng, Zhu Dingwei, Liu Zhujiang 2014,25(2) 20
Study of Character on Sedimentary Water and Palaeoclimate for Chang7 Oil Layer in Ordos Basin Zhang Caili, Gao Along, Liu Zhe, Huang Jing, Yang Yajuan, Zhang Yan 2011,22(4) 20
Discovery and Basic Characteristics of the High-quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin Zhu Guangyou, Chen Feiran, Chen Zhiyong, Zhang Ying, Xing Xiang, Tao Xiaowan, Ma Debo 2016,27(1) 20
Analysis of the Wettability of Longmaxi Formation Shale in the South Region of Sichuan Basin and Its Influence Liu Xiangjun, Xiong Jian, Liang Lixi, Luo Chao, Zhang Andong 2014,25(10) 19
Formation Mechanism and Enrichment Regularities of Kelasu Subsalt Deep Large Gas Field in Kuqa Depression, Tarim Basin Wang Zhaoming 2014,25(2) 19
Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method Yang Feng, Ning Zhengfu, Kong Detao, Liu Huiqing 2013,24(3) 19
Adsorption Characteristic and Influence Factors of Longmaxi Shale in Southeastern Chongqing Bi He, Jiang Zhenxue, Li Peng, Cheng Lijun, Zeng Chunlin, Xu Ye, Zhang Yingying 2014,25(2) 18
Feature of Muddy Shale Fissure and Its Effect for Shale Gas Exploration and Development Long Pengyu, Zhang Jinchuan, Tang Xuan, Nie Haikuan, Liu Zhujiang, Han Shuangbiao, Zhu Liangliang 2011,22(3) 18
Conditions of Formation and Accumulation for Shale Gas Wang Xiang, Liu Yuhua, Zhang Min, Hu Suyun, Liu Hongjun 2010,21(2) 16
Study on the Tight Gas Accumulation Conditions and Exploration Potential in the Qinshui Basin Liang Jianshe, Wang Cunwu, Liu Yinghong, Gao Yinjun, Du Jiangfeng, Feng Ruyong, Zhu Xueshen, Yu Jie 2014,25(10) 14
Typical Features of the First Giant Shale Gas Field in China Liu Ruobing 2015,26(8) 14
Feasibility Analysis of Existing Recoverable Oil and Gas Resource in the Palaeogene Shale of Dongying Depression Zhang Linye, Li Zheng, Li Juyuan, Zhu Rifang, Sun Xinian 2012,23(1) 14
Sequence Stratigraphy of Silurian Black Shale and Its Distribution in the Southeast Area of Chongqing Li Yifan, Fan Tailiang, Gao Zhiqian, Zhang Jinchuan, Wang Xiaomin, Zeng Weite, Zhang Junpeng 2012,23(2) 13
Unconventional Petroleum Resources Assessment: Progress and Future Prospects Qiu Zhen, Zou Caineng, Li Jianzhong, Guo Qiulin, Wu Xiaozhi, Hou Lianhua 2013,24(2) 13
A Comparative Study of the Geological Feature of Marine Shale Gas between China and the United States Wang Shufang, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guan Quanzhong 2015,26(9) 13

(据SCI数据库,统计日期:2020年9月21日)

栏目名称:简 讯

2010年以来《天然气地球科学》SCI高被引论文TOP21

1
魏建光, 唐书恒, 张松航, 等. 宁武盆地山西组过渡相页岩孔隙特征及影响因素[J].煤田地质与勘探201846(1): 78-85.

WEI J G TANG S H ZHANG S H, et al. Analysis on characteristics and influence factors of transitional facies shale pore in Ningwu Basin[J]. Coal Geology & Exploration, 201846(1): 78-85.

2
王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业201737(6): 115-130.

WANG S Q. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industy, 201737(6): 115-130.

3
赵宏图. 世界页岩气开发现状及其影响[J]. 现代国际关系2011(12): 44-49.

ZHAO H T. World shale gas development status and its inpact[J]. Contemporacy International Relations, 2011(12): 44-49.

4
李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业200929(5): 11-16,134.

LI J Z DONG D Z CHEN G S, et al. Prospects and strategic position of shale gas resources in China[J]. Natrual Gas Industry, 200929(5): 11-16,134.

5
戴金星, 董大忠, 倪云燕, 等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学202031(6): 745-760.

DAI J X DONG D Z NI Y Y, et al. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience, 202031(6): 745-760.

6
杨燕青, 张小东, 许亚坤, 等. 豫东地区煤系烃源岩有机质特征与煤系气资源潜力[J]. 煤田地质与勘探201947(2): 111-120.

YANG Y Q ZHANG X D XU Y K, et al. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. Coal Geology & Exploration, 201947(2): 111-120.

7
张小东, 张硕, 许亚坤, 等. 基于模糊数学的豫东煤系气资源勘探有利区预测[J]. 煤炭科学技术201846(11): 172-181.

ZHANG X D ZHANG S XU Y K, et al. Favorable block prediction of coal measure gas resource exploration in Eastern Henan area based on fuzzy mathematics[J]. Coal Science and Technology, 201846(11): 172-181.

8
张小东, 朱春辉, 林俊峰, 等. 豫东马桥详查区煤系气成藏地质特征[J]. 河南理工大学学报:自然科学版201837(5): 40-46.

ZHANG X D ZHU C H LIN J F, et al. Geological reservoir properties of coal measures gas in Maqiao survey area of eastern Henan province[J]. Journal of Henan Polytechnic University: Natural Science, 201837(5): 40-46.

9
邱庆伦, 李中明, 冯辉, 等. 河南中牟区块太原组-山西组页岩气富集控制因素[J]. 地质与资源201827(5): 472-479.

QIU Q L LI Z M FENG H, et al. Controlling factors of the shale gas enrichment in Taiyuan and Shanxi Formations of zhongmu block,Henan Province[J]. Geology and Resources, 201827(5): 472-479.

10
冯辉, 邱庆伦, 汪超, 等. 南华北盆地中牟凹陷太原组—山西组页岩气成藏特征——以河南中牟区块ZDY2井为例[J]. 地质找矿论丛201934(2): 213-218.

FENG H QIU Q L WANG C, et al. The shale gas accumulation characteristics of Taiyuan and Shanxi Formation in Zhongmu sag in basins in south of the north China: In case of well ZDY2 off Zhongmu block, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 201934(2): 213-218.

11
李俊, 唐书恒, 郎雨, 等. 华北过渡相页岩气储层微观孔隙结构特征:以山西省文水地区为例[J]. 中国矿业201524(): 112-118.

LI J TANG S H LANG Y, et al. Chatacteristics of micro-scale pore structures of shale gas resources in transitional facies of north china: A case study of Wenshui area in Shanxi Province[J]. China Mining Magazine, 201524(supplement 2): 112-118.

12
姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发202047(3): 617-628.

JIANG Z X SONG Y TANG X L, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 202047(3): 617-628.

13
HU G PANG Q JIAO K, et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology2020116: 104314.

14
LI Y YANG J PAN Z, et al. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images[J]. Fuel2020260: 116352.

15
ANDREWS G D M BROWN S R MOORE J, et al. The transition from planar to en echelon morphology in a single vein in shale: Insights from X-ray computed tomography scanning[J]. Geosphere202016(2): 646-659.

16
CLARKSON C R SOLANO N R BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel2013103(1): 606-616.

17
张小东, 李朋朋, 张硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术201644(9): 93-98.

ZHANG X D LI P P ZHANG S. Gas emission features of coals with different coalbody structure and their influencing mechanism[J]. Coal Science and Technology, 201644(9): 93-98.

18
LI P ZHANG X ZHANG S. Structures and fractal characteristics of pores in low volatile bituminous deformed coals by low-temperature N2 adsorption after different solvents treatments[J]. Fuel2018224: 661-675.

19
LIU Z LIU D CAI Y, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology2020218: 103261.

20
吴伟, 王雨涵, 曹高社, 等. 南华北盆地豫西地区C—P烃源岩地球化学特征[J].天然气地球科学201526(1): 128-136.

WU W WANG Y H CAO G S, et al. The geochemical characteristics off the carboniferous and permian source rocks in the western Henan, the southern north China basin[J]. Natrual Gas Geosicence, 201526(1): 128-136.

21
徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学200428(4): 450-463.

XU H L ZHAO Z J LV F L, et al. Tectonic evolution of the nanhuabei area and analysis about its petroleum potential[J]. Geotectonica et Metallogenia, 200428(4): 450-463.

22
LOUCKS R G REED R M RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin201296(6): 1071-1098.

23
SLATT R M O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin201195(12): 2017-2030.

24
张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版201741(1): 11-24.

ZHANG J K HE S YAN X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Natural Science, 201741(1): 11-24.

25
TIAN H PAN L ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology201562: 28-43.

26
李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报201735(2): 315-329.

LI C C ZHOU S X LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos basin[J]. Acta Sedimentologica Sinica, 201735(2): 315-329.

27
JARVIE D M HILL R J RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin200791(4): 475-499.

28
吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报201233(2): 249-256.

JI L M QIU J L XIA Y Q, et al. Micro-pore characteristics and methane adorption properties of common clay mineral by electron microscope scanning[J]. Acta Petrolei Sinica,201233(2): 249-256.

29
栾国强, 董春梅, 马存飞, 等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报201634(6): 1208-1216.

LUAN G Q DONG C M MA C F, et al. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale[J]. Acta Sedimentologica Sinica, 201634(6): 1208-1216.

30
刘子驿,张金川,刘飏,等.湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J].科学技术与工程201616(26):34-41.

LIU Z Y ZHANG J C LIU Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi formation shale[J]. Science Technology and Engineering, 201616(26): 34-41.

文章导航

/