天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1501–1514.doi: 10.11764/j.issn.1672-1926.2020.06.011

• 非常规天然气 • 上一篇    下一篇

南华北盆地下二叠统泥页岩孔隙特征及控制因素

刘艳杰1,2,3(),程党性4,5,邱庆伦2,3,瓮纪昌6,王晓瑜2,3,郭力军7,李朋朋8,鲁新川8()   

  1. 1.河南省地质科学研究所,河南 郑州 450001
    2.河南省地质调查院,河南 郑州 450001
    3.地下清洁能源勘查开发产业技术创新战略联盟,河南 郑州 450000
    4.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
    5.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
    6.河南豫矿地质勘查投资有限公司,河南 郑州 450012
    7.中国石油青海油田公司勘探开发研究院,甘肃 敦煌 736200
    8.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
  • 收稿日期:2020-05-25 修回日期:2020-06-30 出版日期:2020-10-10 发布日期:2020-09-30
  • 通讯作者: 鲁新川 E-mail:liuyanjie111@163.com;xclu@lzb.ac.cn
  • 作者简介:刘艳杰(1979-),男,内蒙古赤峰人,工程师,主要从事地质调查研究. E-mail: liuyanjie111@163.com.
  • 基金资助:
    河南省重大科技专项“河南页岩气勘查开发及示范应用研究”(151100311000);国家科技重大专项(2017ZX050010 02-008);中国科学院学部项目(E0290803)

Characteristics of pores and controlling factors of Lower Permian shales in Southern North China Basin

Yan-jie LIU1,2,3(),Dang-xing CHENG4,5,Qing-lun QIU2,3,Ji-chang WENG6,Xiao-yu WANG2,3,Li-jun GUO7,Peng-peng LI8,Xin-chuan LU8()   

  1. 1.Henan Institute of Geological Sciences,Zhengzhou 450001,China
    2.Henan Institute of Geological Survey,Zhengzhou 450001,China
    3.Henan Industry & Technology Innovation Strategy Alliance of Underground Clean Energy Exploration and Development,Zhengzhou 450000,China
    4.Research Institute of Exploration and Development,PetroChina Changqing Oilfieid Company,Xi’an 710018,China
    5.National Engineering Laboratory for Exploration and Development of Low?Permeability Oil & Gas Fields,Xi’an 710018,China
    6.Henan Yukuang Geological Exploration Investment Co. Ltd. ,Zhengzhou 450012,China
    7.Exploration and Development Research Institute,PetroChina Qinghai Oilfield Company,Dunhuang 736200,China
    8.Northweest Institute of Eco?Environment and Resources,CAS,Lanzhou 730000 China
  • Received:2020-05-25 Revised:2020-06-30 Online:2020-10-10 Published:2020-09-30
  • Contact: Xin-chuan LU E-mail:liuyanjie111@163.com;xclu@lzb.ac.cn
  • Supported by:
    The Major Scientific and Technological Projects in Henan Province, China (Grant No. 151100311000);The China National Science & Technology Major Project(Grant No. 2017ZX05001002-008);The Project of Academic Department of Chinese Academy of Sciences(Grant No. E0290803).

摘要:

泥页岩孔隙特征研究是评估页岩气储集能力和评价页岩气开采可行性的关键一步。以南华北盆地MY1井下二叠统山西组和太原组泥页岩样品为研究对象,通过场发射扫描电镜(FE?SEM)、低温氮气吸附、X?射线衍射、等温吸附、有机碳(TOC)含量和镜质体反射率(RO)等实验手段,对南华北盆地下二叠统泥页岩孔隙特征及其控制因素进行了研究。结果表明:南华北盆地下二叠统泥页岩孔隙类型包括粒间孔、晶间孔、有机孔、黏土矿物聚合孔、矿物颗粒表面溶孔和微裂缝,其中黄铁矿粒间孔和黏土矿物聚合孔、有机-黏土矿物复合孔和有机质收缩缝比较发育,表面溶孔不发育;孔体积在0.004 0~0.052 8 cm3/g之间,平均值为0.019 6 cm3/g,比表面积在1.198 9~26.525 7 m2/g之间,平均值为9.506 2 m2/g。平均孔径在2.35~14.38 nm之间,平均值为8.68 nm。泥页岩孔体积和比表面积同步增加,但不同孔径段孔隙对孔体积和比表面积贡献有差异,比表面积主要由孔径小于10 nm的孔隙贡献,而孔径主要由孔径大于10 nm的孔隙贡献,孔体积和比表面积随孔径的增量曲线呈单峰分布。有机质含量和矿物类型及其含量共同制约着孔隙的发育。

关键词: 孔隙特征, 氮气吸附, 下二叠统泥页岩, MY1井, 南华北盆地

Abstract:

The key step in evaluating shale gas reservoir capacity and feasibility of shale gas exploitation is the research on pore characteristics of shale. By means of field emission electron microscopy, low temperature nitrogen adsorption, X-ray diffraction, organic carbon (TOC) content and vitrinite reflectance (RO), the paper investigates the pore characteristics and controlling factors of Permian shale from Well MY1 in Southern North China Basin. The results show that the pore types of Lower Permian shale are intergranular pores, inter-crystal pores, organic pores, dissolution pores on the surface of mineral particles and micro-fractures, in which inter-crystal pores of pyrite, intergranular pores of clay mineral polymer, organic-clay mineral combined pores and contraction joints of organic matters are relatively developed, and dissolution pores on the surface of mineral particles is not developed. Pore volume is in the range of 0.004 0~0.052 8 cm3/g, with a mean of 0.019 62 cm3/g; specific surface area ranges from 1.198 9 m2/g to 26.525 7 m2/g, on average of 9.506 m2/g; average pore diameter is within 2.35~14.38 nm, with an average of 8.68 nm. Pore volume and specific surface area of shales increase synchronously, while pores within different pore diameters makes different contributions to pore volume and specific surface area of shales, such as pores with pore size more than 10 nm mainly contribute to pore volume and with pore size less than 10 nm mainly contribute to specific surface area. Unimodal distributions for the incremental curves of pore volume and specific surface area with increasing pore diameter can be observed. The content of organic matter and the types of minerals and their respective contents jointly govern pore developed conditions.

Key words: Characteristics of porosity, N2 adsorption, Lower Permian shale, Well MY1, Southern North China Basin

中图分类号: 

  • TE122.2+3

图1

南华北盆地构造背景、地理位置及MY1井位置图(修改自文献[9])"

图2

南华北盆地MY1井综合柱状图"

图3

南华北盆地MY1井泥页岩矿物含量"

图4

MY1井泥岩页的微观表面特征(a) 黄铁矿晶间孔;(b) 黏土矿物—颗粒—有机质复合孔;(c)方解石边缘铸模孔;(d)石英表面的溶蚀孔;(e)有机质孔;(f)有机质收缩缝"

图5

低温液氮吸附—脱附曲线"

表1

孔隙结构参数测定结果"

样品编号孔体积/(cm3/g)比表面积/(cm2/g)平均孔径/nm样品编号孔体积/(cm3/g)比表面积/(cm2/g)平均孔径/nm
JY-10.008 72.704 412.85JY-250.009 34.104 59.08
JY-20.008 95.441 36.55JY-260.020 011.996 96.66
JY-30.010 74.708 59.08JY-270.033 119.079 76.94
JY-40.012 44.382 111.35JY-280.023 010.444 18.81
JY-60.018 48.738 88.41JY-320.033 019.230 86.86
JY-70.018 08.879 98.12JY-330.052 826.525 77.96
JY-80.016 96.444 210.02JY-340.010 916.638 72.35
JY-90.016 05.388 311.36JY-380.031 38.429 314.38
JY-100.013 55.648 39.55JY-390.009 86.947 33.86
JY-110.019 37.051 910.94JY-410.036 913.319 110.76
JY-120.013 75.788 39.43JY-420.004 01.198 911.82
JY-130.016 07.789 48.19JY-450.017 26.655 69.93
JY-140.012 37.219 76.85JY-480.017 78.803 57.87
JY-160.009 65.834 16.60JY-500.009 23.044 911.59
JY-170.011 16.113 87.25JY-520.021 311.931 07.24
JY-190.014 110.876 55.18JY-530.026 010.545 09.36
JY-220.028 111.494 79.52JY-540.033 316.270 28.15
JY-230.021 36.904 211.46JY-550.030 616.938 66.83

图6

孔体积与比表面积关系"

图7

平均孔径与孔体积和比表面积关系"

图8

孔体积和比表面积随孔径增量曲线"

图9

泥页岩物质组成与孔体积、比表面积和兰氏体积的关系"

图10

南华北盆地MY1井泥页岩黏土矿物含量"

图11

黄铁矿和有机质伴生现象"

1 魏建光, 唐书恒, 张松航, 等. 宁武盆地山西组过渡相页岩孔隙特征及影响因素[J].煤田地质与勘探,2018,46(1): 78-85.
WEI J G, TANG S H, ZHANG S H, et al. Analysis on characteristics and influence factors of transitional facies shale pore in Ningwu Basin[J]. Coal Geology & Exploration, 2018, 46(1): 78-85.
2 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-130.
WANG S Q. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industy, 2017, 37(6): 115-130.
3 赵宏图. 世界页岩气开发现状及其影响[J]. 现代国际关系, 2011(12): 44-49.
ZHAO H T. World shale gas development status and its inpact[J]. Contemporacy International Relations, 2011(12): 44-49.
4 李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业, 2009, 29(5): 11-16,134.
LI J Z, DONG D Z, CHEN G S, et al. Prospects and strategic position of shale gas resources in China[J]. Natrual Gas Industry, 2009, 29(5): 11-16,134.
5 戴金星, 董大忠, 倪云燕, 等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
DAI J X, DONG D Z, NI Y Y, et al. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
6 杨燕青, 张小东, 许亚坤, 等. 豫东地区煤系烃源岩有机质特征与煤系气资源潜力[J]. 煤田地质与勘探, 2019, 47(2): 111-120.
YANG Y Q, ZHANG X D, XU Y K, et al. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. Coal Geology & Exploration, 2019, 47(2): 111-120.
7 张小东, 张硕, 许亚坤, 等. 基于模糊数学的豫东煤系气资源勘探有利区预测[J]. 煤炭科学技术, 2018, 46(11): 172-181.
ZHANG X D, ZHANG S, XU Y K, et al. Favorable block prediction of coal measure gas resource exploration in Eastern Henan area based on fuzzy mathematics[J]. Coal Science and Technology, 2018, 46(11): 172-181.
8 张小东, 朱春辉, 林俊峰, 等. 豫东马桥详查区煤系气成藏地质特征[J]. 河南理工大学学报:自然科学版, 2018, 37(5): 40-46.
ZHANG X D, ZHU C H, LIN J F, et al. Geological reservoir properties of coal measures gas in Maqiao survey area of eastern Henan province[J]. Journal of Henan Polytechnic University: Natural Science, 2018, 37(5): 40-46.
9 邱庆伦, 李中明, 冯辉, 等. 河南中牟区块太原组-山西组页岩气富集控制因素[J]. 地质与资源, 2018, 27(5): 472-479.
QIU Q L, LI Z M, FENG H, et al. Controlling factors of the shale gas enrichment in Taiyuan and Shanxi Formations of zhongmu block,Henan Province[J]. Geology and Resources, 2018, 27(5): 472-479.
10 冯辉, 邱庆伦, 汪超, 等. 南华北盆地中牟凹陷太原组—山西组页岩气成藏特征——以河南中牟区块ZDY2井为例[J]. 地质找矿论丛, 2019, 34(2): 213-218.
FENG H, QIU Q L, WANG C, et al. The shale gas accumulation characteristics of Taiyuan and Shanxi Formation in Zhongmu sag in basins in south of the north China: In case of well ZDY2 off Zhongmu block, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(2): 213-218.
11 李俊, 唐书恒, 郎雨, 等. 华北过渡相页岩气储层微观孔隙结构特征:以山西省文水地区为例[J]. 中国矿业, 2015, 24(): 112-118.
LI J, TANG S H, LANG Y, et al. Chatacteristics of micro-scale pore structures of shale gas resources in transitional facies of north china: A case study of Wenshui area in Shanxi Province[J]. China Mining Magazine, 2015, 24(supplement 2): 112-118.
12 姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发, 2020, 47(3): 617-628.
JIANG Z X, SONG Y, TANG X L, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.
13 HU G, PANG Q, JIAO K, et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology, 2020, 116: 104314.
14 LI Y, YANG J, PAN Z, et al. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images[J]. Fuel, 2020, 260: 116352.
15 ANDREWS G D M, BROWN S R, MOORE J, et al. The transition from planar to en echelon morphology in a single vein in shale: Insights from X-ray computed tomography scanning[J]. Geosphere, 2020, 16(2): 646-659.
16 CLARKSON C R, SOLANO N R, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103(1): 606-616.
17 张小东, 李朋朋, 张硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术, 2016, 44(9): 93-98.
ZHANG X D, LI P P, ZHANG S. Gas emission features of coals with different coalbody structure and their influencing mechanism[J]. Coal Science and Technology, 2016, 44(9): 93-98.
18 LI P, ZHANG X, ZHANG S. Structures and fractal characteristics of pores in low volatile bituminous deformed coals by low-temperature N2 adsorption after different solvents treatments[J]. Fuel, 2018, 224: 661-675.
19 LIU Z, LIU D, CAI Y, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.
20 吴伟, 王雨涵, 曹高社, 等. 南华北盆地豫西地区C—P烃源岩地球化学特征[J].天然气地球科学, 2015, 26(1): 128-136.
WU W, WANG Y H, CAO G S, et al. The geochemical characteristics off the carboniferous and permian source rocks in the western Henan, the southern north China basin[J]. Natrual Gas Geosicence, 2015, 26(1): 128-136.
21 徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学, 2004, 28(4): 450-463.
XU H L, ZHAO Z J, LV F L, et al. Tectonic evolution of the nanhuabei area and analysis about its petroleum potential[J]. Geotectonica et Metallogenia, 2004, 28(4): 450-463.
22 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
23 SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
24 张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017, 41(1): 11-24.
ZHANG J K, HE S, YAN X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Natural Science, 2017, 41(1): 11-24.
25 TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
26 李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报, 2017, 35(2): 315-329.
LI C C, ZHOU S X, LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 315-329.
27 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
28 吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adorption properties of common clay mineral by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2): 249-256.
29 栾国强, 董春梅, 马存飞, 等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报, 2016, 34(6): 1208-1216.
LUAN G Q, DONG C M, MA C F, et al. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1208-1216.
30 刘子驿,张金川,刘飏,等.湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J].科学技术与工程,2016,16(26):34-41.
LIU Z Y, ZHANG J C, LIU Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41.
[1] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[2] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[3] 陈跃,马东民,吴圣,李新虎,方世跃,郭晨. 鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J]. 天然气地球科学, 2018, 29(2): 189-198.
[4] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[5] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[6] 张交东,曾秋楠,周新桂,刘旭锋,张宏达,王玉芳,毕彩芹,曹建康,杜建波,于明德,张扬,常大宇,王付斌,苗慧心. 南华北盆地太康隆起西部新区上古生界天然气成藏条件与钻探发现[J]. 天然气地球科学, 2017, 28(11): 1637-1649.
[7] 李振生,李建勋,王创,贾超,张交东. 南华北盆地新元古界—下古生界海相烃源岩评价[J]. 天然气地球科学, 2017, 28(11): 1699-1713.
[8] 李超正, 柳广弟, 曹喆, 牛子铖, 牛小兵, 王朋, 张梦媛, 张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[9] 陈燕燕,邹才能,Maria Mastalerz,朱如凯,白斌,杨智. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学, 2015, 26(9): 1646-1656.
[10] 李恒超,刘大永,彭平安,王庆涛. 构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J]. 天然气地球科学, 2015, 26(9): 1705-1711.
[11] 张瑜,闫建萍,贾祥娟,李艳芳,邵德勇,于萍,张同伟. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学, 2015, 26(9): 1755-1762.
[12] 李贤庆,王元,郭曼,张吉振,赵佩,徐红卫,杨杰,王飞宇. 川南地区下古生界页岩气储层孔隙特征研究[J]. 天然气地球科学, 2015, 26(8): 1464-1471.
[13] 吕海刚,于萍,闫建萍,邵德勇,贾详娟,张同伟. 四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J]. 天然气地球科学, 2015, 26(8): 1556-1562.
[14] 杨巍,陈国俊,吕成福,仲佳爱,徐勇,杨爽,薛莲花. 鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J]. 天然气地球科学, 2015, 26(3): 418-426.
[15] 吴伟,王雨涵,曹高社,黄雪峰,刘惟庆. 南华北盆地豫西地区C—P烃源岩地球化学特征[J]. 天然气地球科学, 2015, 26(1): 128-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 完颜容,杨占龙,魏立花,黄云峰,郭精义,李再光. 吐哈盆地台北西部中侏罗统三间房―七克台组沉积相特征[J]. 天然气地球科学, 2006, 17(5): 693 -697 .
[3] 王皆明;张昱文;丁国生;郑雅丽;陆笑心;. 任11井潜山油藏改建地下储气库关键技术研究[J]. 天然气地球科学, 2004, 15(4): 406 -411 .
[4] 柳广弟,李剑,李景明,朱筱敏,王震亮,王雅星,谢增业 . 天然气成藏过程有效性的主控因素与评价方法[J]. 天然气地球科学, 2005, 16(1): 1 -6 .
[5] 何家雄;陈刚;. 莺歌海盆地CO_2分布、富集特征及初步预[J]. 天然气地球科学, 1997, 8(3): 9 -17 .
[6] 唐海发;赵彦超;汪立君;. 胜坨气田明化镇组下段沉积微相特征及其与储层物性的关系[J]. 天然气地球科学, 2004, 15(3): 257 -260 .
[7] 黄彦庆,张昌民,汤 军,侯读杰,余明发 . 克拉玛依油田六中区克下组沉积微相及其含油气性[J]. 天然气地球科学, 2007, 18(1): 67 -70 .
[8] 曾德铭;王兴志;康保平;. 川西北雷口坡组储层原生孔隙内胶结物研究[J]. 天然气地球科学, 2006, 17(4): 459 -462 .
[9] 褚庆忠;. 垦利断裂带油气成藏模式研究[J]. 天然气地球科学, 2002, 13(3-4): 52 -54 .
[10] 刘化清,李相博,白云来,李天顺. 甘肃省油气勘探开发现状及资源潜力[J]. 天然气地球科学, 2006, 17(5): 612 -615 .