收稿日期: 2013-12-24
修回日期: 2014-03-24
网络出版日期: 2014-10-10
基金资助
中国地质科学院地质力学研究所项目“柴达木盆地东部石炭系页岩气资源潜力评价研究”(编号:1212011221045)资助.
Gas Transport Mechanism in Tight Porous Media
Received date: 2013-12-24
Revised date: 2014-03-24
Online published: 2014-10-10
气体在致密多孔介质中的运移受多种因素的影响,如孔隙结构、气体的赋存方式、温度和压力等。地层压力大,气体密度高,应属于稠密气体|另外,在页岩、煤岩、致密砂岩等多孔介质中发育了丰富的纳米级孔隙,使气体的运移机制极为复杂。详细研究了气体在致密多孔介质中的运移机理,并引入稠密气体理论,通过计算分子平均自由程,发现直径大于2nm的孔隙中,压力大于1.135MPa时(76.85℃),气体不会发生Knudsen型扩散,Fick型扩散和表面扩散可能是主要的扩散方式|并得到Knudsen渗透率修正因子随压力增加而减小,随温度的升高而增加,随孔隙半径的减小而增加,在较小孔隙中温度的影响更显著;气体从小孔扩散至大孔和裂缝系统是多种扩散机制的结果,孔隙的大小、气体的赋存方式和压力直接关系到气体的运移机理。对比分析Klinkenberg渗透率和Knudsen渗透率修正因子,发现Knudsen渗透率模型是更精确的渗透率模型,Klinkenberg渗透率修正因子可以看作是Knudsen渗透率修正因子的一级修正。
关键词: Knudsen数; 渗透率修正因子; Enskog稠密气体理论; 滑脱效应
刘圣鑫,钟建华,刘晓光,李勇,邵珠福,刘选 . 致密多孔介质气体运移机理[J]. 天然气地球科学, 2014 , 25(10) : 1520 -1528 . DOI: 10.11764/j.issn.1672-1926.2014.10.1520
[1]Zou Caineng,Tao Shizhen,Zhang Xiangxiang ,et al.Geologic characteristics,controlling factors and hydrocarbon accumulation mechanisms of China′s large gas provinces of low porosity andpermeability[J].Science in China:Series D,2009,52(8):1068-1090.[邹才能,陶士振,张响响,等.中国低孔渗大气区地质特征、控制因素和成藏机制[J].中国科学:D辑,2009,39(11):1607-1624.]
[2]Zou Caineng,Dong Dazhon,Wang Shejiao ,et al.Geological characteristics formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-753.[邹才能,董大忠,王社教,等.我国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-753.]
[3]Yao Tongyu,Huang Yanzhang,Li Jishan.Flow regim for shale gas in extra low permeability porous media[J].Acta Mechanica Sinica,2012,44(6):990-995.[姚同玉,黄延章,李继山.页岩气在超低渗介质中的渗流行为[J].力学学报 2012,44(6):990-995.]
[4]Li Xiaoqiang,Zhou Zhiyu,Feng Guang.The impact of shale matrix diffusion flow on shale gas capacity[J].Progress in Exploration Geophysics,2011,1(5):67-70.[李晓强,周志宇,冯光.页岩基质扩散流动对页岩气井产能的影响.[J].油气藏评价与开发,2011,1(5):67-70.]
[5]Li Jianqiu,Cao Jianhong,Duan Yonggang.Shale gas seepage mechanism and deliverability decline in gas wells[J].Natural Gas Exploration and Development,2011,34(2):34-37.[李建秋,曹建红,段永刚.页岩气井渗流机理及产能递减分析[J].天然气勘探与开发,2011,34(2):34-37.]
[6]Duan Yonggang,Wei Mingqiang,Li Jianqiu ,et al.Shale gas seepage mechanism and fractured wellsproduction evaluation[J].Journal of Chongqing University:Natural Science Edition,2011,34(4):62-66.[段永刚,魏明强,李建秋,等.页岩气藏渗流机理及压裂井产能评价[J].重庆大学学报:自然科学版,2011,34(4):62-66.]
[7]Gao Shusheng,YuXinghe,Liu Huaxun.Impact of slippage effect on shale gas well productivity[J].Natural Gas Industry,2011,31(4):55-58.[高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011,31(4):55-58.]
[8]Chen Daixun.Gas slippage phenomenon and change of permeability when gas flowes in tight porous media[J].Acta Mechanica Sinica,2002,34(1):96-101.[陈代殉.渗流气体滑脱现象与渗透率变化的关系[J].力学学报2002,34(1):96-101.]
[9]Li Zhiping,Li Zhifeng.Dynamic characteristics of shale gas flow in nanoscale pores[J].Natural Gas Industry,2012,32(4):50-53.[李治平.页岩气纳米级孔隙渗流动态特征[J].天然气工业,2012,32(4):50-53.]
[10]Chen Qiang,Kang Yili,You Lijun ,et al.Micro-pore structure of gas shale and its effect on gas mass transfer[J].Natural Gas Geoscience,2013,24(6):1298-1304.[陈强,康毅力,游利军.页岩微孔结构及其对气体传质方式影响[J].天然气地球科学,2013,24(6):1298-1304.]
[11]Li Zhifeng,Li Zhiping,Miao Lili ,et al.Gas Flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geoscience,2013,24(5):1042-1047.[李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,24(5):1042-1047.]
[12]Kauzmann W,Kinetic.Theory of Gas[M].New York:Benjamin Inc.,1976.
[13]Tsien H S.Superaerodynamics,mechanics of rarefied gases[J].Journal of Aeronautical Sciences,1946,(12):653-664.
[14]Maxwell J C.On stresses in rarefied gases arising from inequalities of temperature[J].Philosophical Transactions of the Royal Society,1867,170:231-256.
[15]Knudsen M.Die Gesetze der Molukularstrommung und der inneren Reibungsstrornung der Gase durch Rohren[J].Ann.der Phys,1909,28:75-130.
[16]Klinkenberg L J.The Permeability of Porous Media to Liquid and Gases[C].API Drilling and Production Practice,1941:200-213.
[17]Beskok A,Karniadakis G E.A model for flows in channels,pipes,and ducts at micro and nano scales Microscale[J].Thermophysical Engineering,1999,3(1):43-77.
[18]Javadpour F.Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J].Journal of CanadaPetroleum Technology,2009,48(8):16-21.
[19]Florence F A,Rushing J A,Newsham K E ,et al.Improved Permeability Prediction Relations for Low Permeability Sands[R].SPE-107954,2007.
[20]Karniadakis G E,Beskok A.Micro Flows:Fundamentals and Simulation[M].New York:Springer,2002.
[21]Wang M R,Li Z X.Similarity of ideal gas flow at different scales[J].Scienc in China:Series E,2003,46:661-670.
[22]He Xueqiu,Nie Baisheng.Diffusion mechanism of porous gases in coal seams[J].Journal of China University of Mining & Technology,2001,30(1):29-32.[何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):29-32.]
[23]Li Xiaoyan.Effect of pore Structure on CBM transport:Taking Qinshui Basin as the example[J].Natural Gas Geoscience,2004,15(4):341-344.[李小彦.孔隙结构在煤层气运移过程中的作用——以沁水盆地为[J].天然气地球科学,2004,15(4):341-344.]
[24]Yang R T.Gas Separation by Adsorption Processes[M].London:Imperial College Press,1997.
[25]Nie Baisheng,He Xueqiu,Wang Enyuan.Diffusion mode of methane gas in coal pores[J].Mining Safety & Environmental Protect ion,2000,27(5):14-16.[聂百盛,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):14-16.]
[26]Ju Yiwen,Jiang Bo,Wang Guiliang ,et al.Tectonic Coals:Structures an d Physical Properties of Reservoirs[M].Xu zhou:China University of Mining and Technology Press,2005:165-171.[琚宜文,姜波,王桂梁,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005:165-171.]
[27]Schneider P,Smith J M.Chromatographic study of surface diffusion[J].AIChE Journal,1968,14,886-895.
[28]Reed E M,Butt J B.Surface diffusion of single sorbate at low and intermediate surface coverage[J].The Journal of Chemical Physics,1971,(75):133.
[29]Uhlhorn R J R.Ceramic Membranes for Gas Separation:Synthesis and Transport Properties[D].Enschede,The Netherlands:University of Twente,1990.
[30]Haraya K,Shindo Y,Hakuta T ,et al.Separation of H2-CO2 mixtures with porous glass membranes in the intermediate flow region[J].Journal of Chemical Engineering of Japan,1986,(19):186.
[31]Cui X,Bustin A M M,Bustin R M.Measurements of gas permeability and diffusivity of tight reservoir rocks:Different approaches and their applications[J].Geofluids,2009,9:208-223.
[32]Fathi E,Akkutlu I Y.Nonlinear Sorption Kinetics and Surface Diffusion Effects on Gas Transport in Low-Permeability Formations[C].SPE-124478-MS,2009.
[33]Zhang Dengfeng,Cui Yongjun,Li Songgeng ,et al.Adsorption and diffusion behaviors of methane and carbon dioxide on various rank coals[J].Journal of China Coal Society,2011,(10):1693-1698.[张登峰,催永君,李松庚,等.甲烷和二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报 2011,(10):1693-1698.]
[34]Okazaki M,Tamon H,Toei R.Interpretation of surface flow phenomenon of adsorbed gases by hopping model[J].American Institute of Chemical Engineers,1981,(27):262.
[35]Shindo Y,Hakuta T,Yoshitome H ,et al.Separation of gases by means of a porous glass membrane at high temperature[J].Journal of Chemical Engineering of Japan,1984,(17):650.
[36]Jeong-Gil Choi,Do D D,Do H D.Surface diffusion of adsorbed molecules in porous media:Monolayer,multilayer,and capillary condensation regimes[J].Industrial and Engineering Chemistry Research,2001,40:4005-4031.
[37]Chapman S,Cowling T G.The Mathematical Theory of Non-Uniform Gases[M].Cam Bridge:Cambridge University Press,1970.
[38]Kaneko K,Murata K.An analytical method of micropore filling of a supercritical gas[J].Adsorption,1997,(3):197-208.
[39]Bekyarova,Kaneko K.Adsorption of supercritical N2and O2 on pore-controlled cardon aerogels[J].Colloid and Interface Science,2001,238:357-361.
[40]Givan F.Effective correlation of apparent gas permeability in tight porous media[J].Transport in Porous Media,2010,82(2):375-384。
[41]Miche G,Givan F,Sigal R F ,et al.Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution,Formation Factor,and Non-Darcy Flow Mechanisms[C].SPE-147438-PP,2011.
[42]Bravo M C.Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs[C].Department of Energy Publication No.DE-FG26-04NT42132,2006.
/
〈 |
|
〉 |