天然气地质学

柴达木盆地北缘深部碎屑岩储层成岩演化特征研究—以昆特依凹陷昆2井为例

展开
  • (1.中国科学院地质与地球物理研究所气体地球化学重点实验室,甘肃 兰州 730000;
    2.甘肃省地矿局第二地质矿产勘察院,甘肃 兰州 730000;3.中国科学院研究生院, 北京 100049)

收稿日期: 2007-12-21

  修回日期: 2008-02-16

  网络出版日期: 2008-04-10

基金资助

中国科学院知识创新工程项目(编号:KZCX3-SW-147);国家“973”项目(编号:2003CB214606、2005CB422105);中国科学院“西部之光”项目联合资助.

Diagnetic Evolution Characteristics of Deeply-Buried Clastic Reservoirs, Northern Qaidam Basin: A Case Study from Well Kun 2

Expand
  • (1.Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000,China; 2.The Second Institute of Ore Resources, Exploration Bureau of Geology Ore Deposits, Lanzhou 730020, China;3.Graduate School, Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2007-12-21

  Revised date: 2008-02-16

  Online published: 2008-04-10

摘要

柴达木盆地北缘昆2井第三系深部储层岩性由成分成熟度和结构成熟度均较低的岩屑砂岩或长石岩屑砂岩组成,而杂基含量较高(一般大于15%)是造成该储层物性先天较差的主要原因。昆2井经历的成岩作用有压实作用、胶结作用、交代作用和微弱的溶蚀作用,其中,碱性成岩作用控制了储层成岩演化特征,压实作用和不同期次碳酸盐胶结作用是造成储层物性变差的主要成岩改造原因。深部储层N 1、E3和E 1+2主要处于早成岩阶段B期的晚期和晚成岩阶段的A期和B期,其中上干柴沟组(N1)储层为低孔—低渗储层夹特低孔—特低渗储层,孔隙度在0.1%~15.59%之间,平均为7.75%,渗透率在 (0.1~37.38)×10-3μm 2之间,平均为13.23×10-3μm 2,储集空间以粒间贴边孔为主,适于储集天然气,但也可储集少量石油;下干柴沟组(E3) 储层为特低孔—特低渗型储层,孔隙度在2.2%~14.3%之间,平均为5.0%,渗透率在(0.02~5.55)×10 -3μm2之间,平均为0.58×10-3μm2,储集空间以裂缝孔为主,适于储集气态烃。

本文引用格式

王琪;白斌;李小燕;陈国俊,;禚喜准,;张瑞, . 柴达木盆地北缘深部碎屑岩储层成岩演化特征研究—以昆特依凹陷昆2井为例[J]. 天然气地球科学, 2008 , 19(2) : 157 -164 . DOI: 10.11764/j.issn.1672-1926.2008.02.157

Abstract

The deeply-buried Tertiary clastic reservoirs of the Well Kun 2 in the Qaidam basin are mainly composed of lithic sandstones and feldspathic lithic sandstones with lower compositional and textural maturation degrees. The much higher content of matrix (generally >15%) is the dominant cause for porosity damage during sedimentation of these clastic reservoirs. The reservoirs in Well Kun 2 have undergone the mechanical compaction, cementation, replacement, and weak dissolution, of which the compaction and carbonate cementation with different phases are the two main factors responsible for porosity reduction during the increasingly progressive diagenesis. The deeply\|buried reservoirs (including N1, E3 and E1+2) are now in late B period of early diagenetic stage, and periods A and B of late diagenetic stage. The diagenesis occurred in the alkline diagenetic environment controls the diagenetic evolutionary features of deeply\|buried clastic reservoirs in Well Kun 2. The clastic reservoirs distributed in Upper Ganchagou Fm.(N1) are mainly low porosity-low permeability sandstones containing a few extremely low porosity and permeability reservoirs, with porosity ranging from 0.1 to 15.59%, averaging 7.75%, and permeability from 0.1 to 37.38×10-3μm2, averaging 13.23×10-3μm2. The reservoir spaces of the clastic reservoirs are mainly compressed intergranular pores which are favorable for preserving natural gas, but could also contain a few crude oil. The reservoirs of Lower Ganchaigou Fm.(E3 ) are mainly extremely lower porosity and permeability clastic sandstones, with porosity varing from 2.2%~14.3%, averaging 5.0%, permeability from 0.02 to 5.55×10-3μm2, averaging 0.58×10-3μm2, which can act as gaseous hydrocarbon reservoirs with dominant spaces composed of fracture pores.

 

参考文献

[1]Talor T R. The influence of calcite dissolution on reservoir porosity in Miocene sandstones, picaroon field, offshore Texas Gulf coast[J]. Journal of Sedimentary Petrology, 1990,60: 322-334.
[2]Mostafa F, Harrison T M,Grove M. In situ stable isotopic evidence for protracted and complex carbonate cementation in a petroleum reservoir, North Coles Levee, San Joaquin basin, California, USA[J]. Journal of Sedimentary Research, 2001,71(3):444-458.
[3]Beard D C,  Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973,57: 349-369.
[4]Dutton S P,Diggs T N.Evolution of Porosity and Permeability in the Lower Cretaceous Travis Peak Formation, East Texas[J]. AAPG Bulletin,1992,76: 252-269..
[5]刘家铎,吴富强. 深部储层孔隙类型划分方案探讨[J].成都理工学院学报,2001,28(3):255-259.
[6]张枝焕,王泽中,李艳霞,等.黄骅坳陷三马地区中—深部储层成岩作用及主控因素分析[J]. 沉积学报,2003,21(4): 593-598.
[7]吴富强,李后蜀,周勇,等. 深部储层动力学刍议[J].重庆大学学报:自然科学版,2002,25(2): 93-95.
[8]苏明军,王西文,韩乾凤,等.储层精细研究技术在老区挖潜中的应用——以黄骅坳陷板南油区为例[J].天然气地球科学,2007,18(6):864-868.
[9]石昕,戴金星,赵文智. 深层油气藏勘探前景分析[J].勘探战略,2005,(1): 1-11.
[10]张正刚,袁剑英,陈启林.柴北缘地区油气成藏模式与成藏规律[J].天然气地球科学,2006,17(5):649-652.
[11]赵雪凤,朱光有,刘钦甫,等.深部海相碳酸盐储层孔隙发育的主控因素研究[J].天然气地球科学,2007,18(4):514-521.

文章导航

/