天然气地球科学

• 综述与评述 • 上一篇    下一篇

深部流体在富有机质烃源岩形成中的作用

刘佳宜,刘全有,朱东亚,孟庆强,刘文汇,邱登峰,黄振凯   

  1. 1.页岩油气富集机理与有效开发国家重点实验室,北京 100083;
    2.中国石化石油勘探开发研究院,北京 100083;
    3.西北大学,陕西 西安 710069
  • 收稿日期:2017-09-14 修回日期:2017-11-02 出版日期:2018-02-10 发布日期:2018-02-10
  • 通讯作者: 刘全有(1975-),男,山西朔州人,教授级高级工程师,博士,主要从事油气地质与地球化学研究. E-mail:liuqy.syky@sinopec.com.
  • 作者简介:刘佳宜(1993-),女,内蒙古呼伦贝尔人,助理工程师,硕士,主要从事岩石地球化学研究.E-mail:liujy.syky@sinopec.com.
  • 基金资助:

    中国科学院战略性先导科技专项(A类)项目(编号:XDA14010404);国家杰出青年科学基金项目“成烃—成藏油气地球化学”(编号:41625009)联合资助.

The role of deep fluid in the formation of organic-rich source rocks

Liu Jia-yi,Liu Quan-you,Zhu Dong-ya,Meng Qing-qiang,Liu Wen-hui,Qiu Deng-feng,Huang Zhen-kai
 
  

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing 100083,China;
    2.Research Institute of Petroleum Exploration and Production,Sinopec,Beijing 100083,China;
    3.Northwest University,Xi’an 710069,China
  • Received:2017-09-14 Revised:2017-11-02 Online:2018-02-10 Published:2018-02-10

摘要:

长期以来,关于富有机质烃源岩形成的研究主要集中于盆地之内,盆地之外流体活动对富有机质烃源岩形成的影响关注较少。深部流体作为联系沉积盆地内、外的纽带,通过提高海洋初级生产力和形成有利的有机质保存环境2个方面作用为富有机质烃源岩的形成创造条件。生产力方面,深部流体携带了大量NO 3-、PO43-、NH4+等营养盐类,CH 4、CO 2、H 2、NH 3等热液气体和Fe、Mn、Zn、Co、Cu等微量金属元素以及来自地球内部的古细菌、嗜热细菌等微生物,它的注入促进了水体生物的繁盛和初级生产力的提高,为有机质的形成和富集创造了条件。保存环境方面,深部流体的喷发,向大气和海洋中输送了大量的CO 2,与水体中的Ca2+、Mg2+等离子结合,形成碳酸盐类,增加了水体的盐度,促进了水体的分层和海水循环的静止,为海洋环境中有机质的富集创造了有利的水体动力学条件和氧化还原状态。而岩浆热液活动向大气和海洋输送的大量H 2S、CO等还原性气体溶解于水中,同样可以促进水体还原环境的形成。因此,深部流体的喷发为富有机质烃源岩的形成提供了重要物质保障和有利的环境条件。
 

关键词: 深部流体, 营养元素, 还原环境, 生物繁盛, 有机质富集

Abstract:

For a long time,the research of the formation of organic-rich source rocks has mainly focused on the inner basins.The effect of exogenous fluid on organic-rich source rocks’ formation has received little concern.As the belt connecting the inner and external of a basin,deep fluid created proper condition for the formation of organic-rich source rocks,by promoting primary productivity and organic preservation.In productivity facet,deep fluid carried a large amount of nutrient such as NO-3,PO3-4 and NH4+,hydrothermal gases such as CH4,CO2,H2 and NH3,trace metal elements such as Fe,Mn,Zn,Co and C,as well as microbes from deep earth such as archaea bacteria and thermophilic bacteria.The injection of deep fluid not only promoted the thriving of organism and primary productivity,but also provided favorable conditions for organic formation and enrichment.In preservation facet,the eruption of deep fluid sent massive CO2 to atmosphere and ocean.By combining with ions like Ca2+ and Mg2+,these CO2 transformed into carbonate.As a result,it increased the salinity of water,which in return lead to the stratification and quiescence of water.All of above process created advantageous hydrodynamic condition and redox state for organic enrichment.Besides,the dissolution of reductive gas from magma and hydrothermal,such as H2S and CO,also contributed to the formation of reductive water condition.To sum up,the eruption of deep fluids provided significant ingredients sources and favorable preservation condition for the formation of organic-rich source rocks.

Key words: Deep fluid, Nutrient elements, Reductive condition, The thriving of organism, Organic enrichment

中图分类号: 

  • TE122.1

[1]Hazen R M,Schiffries C M.Why deep carbon?[J].Reviews in Mineralogy & Geochemistry,2013,75(1):1-6.
[2]Jin Z J,Zhang L,Zeng J,et al.Multi-origin alkanes related to CO2-rich,mantle-derived fluid in Dongying Sag,Bohai Bay Basin[J].Chinese Science Bulletin,2002,47(20):1756-1760.
[3]Jin Z J,Zhang L P,Yang L,et al.A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins[J].Journal of Petroleum Science and Engineering,2004,41(1-3):45-55.
[4]Liu Q,Dai J,Jin Z J,et al.Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen Gasfield,Songliao Basin,China,suggesting abiogenic alkanes?[J].Journal of Asian Earth Sciences,2016,115:285-297.
[5]Liu Q,Zhu D,Jin Z,et al.Effects of deep CO2 on petroleum and thermal alteration:The case of the Huangqiao oil and gas field[J].Chemical Geology,2017,469(10):214-229.
[6]Zhu D,Jin Z,Hu W.Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J].Science China Earth Sciences,2010,53(3):368-381.
[7]Zhu D,Liu Q,Jin J,et al.Effects of deep fluids on hydrocarbon generation and accumulation in Chinese Petroliferous Basins[J].Acta Ggeologica Sinica,2017,91(1):301-319.
[8]Little C T S,Herrington R J,Maslennikov V V,et al.Silurian hydrothermal vent community from the Southern Urals,Russia[J].Nature,1997,385:146-148.
[9]Verati C,Donatode P,Prieur D,et al.Evidence of bacterial activity from micrometer-scale layer analyses of black smoker sulfide structures Pito seamount site,eastermicroplate[J].Chemical Geology,1999,158(3/4):257-269.
[10]Little C T S,Herrington R J,Haymon R M,et al.Early Jurassic hydrothermal vent community from the franciscan complex,San Rafael Mountains,California[J].Geology,1999,27(2):167-170.
[11]Rasmussen B.Filamentous microfossils in a 3235 Ma old volcanogenic massive sulphide deposit[J].Nature,2000,405:676-679.
[12]You C F,Bickle M J.Evolution of an active seafloor massive sulphide deposit[J].Nature,1998,394:668-671.
[13]Han X,Wu G,Cui R,et al.Discovery of a Hydrothermal Sulfide Deposit on the Southwest Indian Ridge at 49.2°E[C].San Francisco,California,USA:AGU Fall Meeting Abstracts,2010,OS21C-1531.
[14]Tao C,Lin J,Chen Y J,et al.First active hydrothermal vents on an ultraslow-spreading center:Southwest indian ridge[J].Geology,2012,40(1):47-50.
[15]Furnes H,Thorseth I H,Torsvik T,et al.Identifying biointeraction with basaltic glass in oeeanic crust and implications for estimating the depth of the oceanic biosphere:A review[J].Geological Society,London:Special Publications,2002,202:407-421.
[16]Hou Zengqian,Li Yanhe,Ai Yongde,et al.The proof of mantle-source helium from the helium isotopic composition of hydrothermal mineral-formation system in Okinawa trough[J].Science in China:Series D,1999,29(2):55-162.侯增谦,李延河,艾永德,等.冲绳海槽活动热水成矿系统的氦同位素组成:幔源氦证据[J].中国科学:D辑,1999,29(2):155-162.
[17]Fouquet Y,von Stackelberg U,Charlou J L,et al.Metallogenesis in back-arc environments:The Lau Basin example[J].Economic Geology,1993,88(8):2154-2181.
[18]Wu Shiying,Liu Yanguang,Li Zelin,et al.The study of petromineralogy and geochemistry in Mariana trough hydrothermal zone[J].Journal of Oceanography of Huanghai & Bohai Seas,2001,19(4):22-29.
吴世迎,刘焱光,李泽林,等.马里亚纳海槽热液区岩石矿物学和岩石化学特征研究[J].黄渤海海洋,2001,19(4):22-29.
[19]Halbach P,Koschinsky A,Seifert R,et al.Diffuse hydrothermal activity,biological communities,and mineral formation in the North Fiji Basin(SW Pacific):Preliminary results of the R/V SONNE cruise SO-134[J].Inter Ridge News,1999,8(1):38-44.
[20]Song Zhandong,Zha Ming,Zhao Weiwei,et al.The effects of HuiMin sag igneous rocks on the formation of hydrocarbon reservoir[J].Journal of China University of Petroleum:Edition of Natural Sciences,2007,31(2):1-8.宋占东,查明,赵卫卫,等.惠民凹陷阳信洼陷火成岩及其对油气成藏的影响[J].中国石油大学学报:自然科学版,2007,31(2):1-8.
[21]Chu Chenglin,Chen Qianglu,Zhang Bo,et al.The influence of hydrothermal activity on the formation of source rock in Yuertusi Formation Dongergou profile[J].Sinica Acta Sedimentologica,2016,34(4):803-810.储呈林,陈强路,张博,等.热液活动对东二沟剖面玉尔吐斯组烃源岩形成的影响[J].沉积学报,2016,34(4):803-810.
[22]Gao Fuhong,Gao Hongmei,Zhao Lei.The influence of volcanic eruption on the formation fo source rock:Taking Kuli Formation in Labudalin Basin as a sample[J].Acta Petrologica Sinica,2009,25(10):2671-2678.高福红,高红梅,赵磊.火山喷发活动对烃源岩的影响:以拉布达林盆地上库力组为例[J].岩石学报,2009,25(10) :2671-2678.
[23]Dawson W C.Shale microfacies:Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops and surface equivalents[J].AAPG Bulletin,2000,84(10):607-621.
[24]Gaibor J,Hochuli J P A,Winkler W,et al.Hydrocarbon source potential of the Santiaogo Formation,Oriente Basin,SE of Ecuador[J].Journal of South American Earth Sciences,2008,25(2):145-156.
[25]Parrish C B.Insights into the Appalachian Basin Middle DevonianDeposition System from U-Pb Zircon Geochronology of Volcanic Ashes in the Marcellus Shale and Onondaga Limestone[D].Morgantoun,West Virginia:West Virginia University,2013.
[26]Javoy M,Pineau F,Allègre C J.Carbon geodynamic cycle[J].Nature,1982,300:171-173.
[27]Dasgupta R,Hirschmann M M.The deep carbon cycle and melting in Earth’s interior[J].Earth and Planetary Science Letters,2010,298(1/2):1-13.
[28]Dasgupta R.Ingassing,storage,and outgassing of terrestrial carbon through geologic time[J].Reviews in Mineralogy and Geochemistry,2013,75(1):183-229.
[29]Kerrick D M,Connolly J A D.Subduction of ophicarbonates and recycling of CO2 and H2O[J].Geology,1998,26(4):375-378.
[30]Frezzotti M L,Huizenga J M,Compagnoni R,et al.Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere[J].Geochimica et Cosmochimica Act,2014,143(15):68-86.
[31]Dasgupta R,Hirschmann M M,Withers A C.Deep global cycling of carbon constrained by the solidus of anhydrous,carbonated eclogite under upper mantle conditions[J].Earth and Planetary Science Letters,2004,227(1/2):73-85
[32]Frost D J,McCammon C A.The redox state of Earth’s mantle[J].Annual Review of Earth and Planetary Sciences,2008,36:389-420.
[33]Dasgupta R.Ingassing,storage,and outgassing of terrestrial carbon through geologic time[J].Reviews in Mineralogy and Geochemistry,2013,75(1):183-229.
[34]Berner R A.The long-term carbon cycle,fossil fuels and atmospheric composition[J].Nature,2003,426(6964):323-326.
[35]Zhang Lifie,Tao Renbiao,Zhu Jianjiang.The problems of deep carbon cycle in subduction zone[J].Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(2):185-196.张立飞,陶仁彪,朱建江.俯冲带深部碳循环:问题与讨论[J].矿物岩石地球化学通报,2017,36(2):185-196.
[36]Gran H H.On the conditions for the production of plankton in the sea[J].Rapports et Proces Verbaux des Volume Reunions,1931,75:37-46.
[37]Martin J H,Fitzwater S E.Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic[J].Nature,1988,331:341-343.
[38]Price N M,Andersen L F,Morel F M M.Iron and nitrogen nutrition of equatorial Pacific plankton[J].Deep-Sea Research,1991,38(11):1361-1378.
[39]Price N M,Morel F M M.Colimitation of phytoplankton growth by Ni and nitrogen[J].Limnology and Oceanography,1991,36(6):1071-1077.
[40]Morel F M M,Hudson R J,Price N M.Limitation of productivity by trace metals in the sea[J].Limnology and Oceanography,1991,36(8):1742-1755.
[41]Martin J H,Gordon R M,Fitzwater S E,et al.Vertex:Phytoplankton/iron studies in the Gulf of Alaska[J].Deep-Sea Research,1989,36(5):649-680.
[42]Price N M.The equatorial Pacific Ocean:Grazer-controlled phytoplankton populations in an iron-limited ecosystem[J].Limnology and Oceanography,1994,39(3):520-534.
[43]Gerringa L J A,de Baar H J W,Timmermans K R.A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA[J].Marine Chemistry,2000,68(4):335-346.
[44]Browning T J,Bouman H A,Henderson G M,et al.Strong responses of Southern Ocean phytoplankton communities to volcanic ash[J].Research Letter,2014,41(8):2851-2857.
[45]
Martin J  H,Gordon R M,Fitzwater S  E.Iron in Antarctic waters[J].Nature,1990,345:156-158.
[46]Hoffmann L J,Breitbarth E,Ardelan MV,et al.Inuence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emilianiahuxleyi[J].Marine Chemistry,2012,132:28-33.
[47]Taylor C D,Wirsen C O.Microbiology and ecology of filamentous sulfur formation[J].Science,1997,277(5331):1483-1485.
[48]Blank J G,Delaney J R,Des Marsais D.The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge[J].Geochimica et Cosmochimica Acta,1993,57(4):875-888.
[49]Calvert S E.Oceanographic controls on the accumulation of organic matter in marine sediments[J].Marine Petroleum Source Rocks,1987,26:1-8.
[50]Stein R.Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomania/Turonian Atlantic ocean[J].Marine Geology,1986,72(3/4):199-209.
[51]Kartz B J.Controls on distribution of lacustrine source rocks through time and space:Chapter 4[C].AAPG Memoir 50,1990:61-76.
[52]Ye Dequan,Zhong Xiaochun,Yao Yimin,et al.Tertiary Oil-gas field in China (I) [M].Beijing:Petroleum Industry Press,1993:293-327.
叶得泉,钟筱春,姚益民,等.中国油气区第三系(I)[M].北京:石油工业出版社,1993:293-327.
[53]Jin Qiang,Zhu Guangyou.The problems and relative progress of source rock sediments in Chinese salted lake basin[J].Geological Journal of China Universities,2006,12(4):483-492.金强,朱光有.中国新生代咸化湖盆烃源岩沉积的问题及相关进展[J].高校地质学报,2006,12(4):483-492.
[54]Demaison G J,Moore G T.Environment and oil source bed genesis[J].Organic Geochemistry,1979,2:9-31.
[55]Van Cappellen P,Ingall E D.Benthic phosphorus regeneration,net primary production and ocean anoxia:A model of coupled marine biogeochemical cycles of carbon and phosphorus[J].Paleoceanography,1994,9(5):677-692.
[56]Zhang G J,Zhang X L,Hu D P,et al.Redoc chemistry changes in the panthalassic ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery[J].PNAS,2017,114(8):1806-1810.
[57]Shen Y.Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction[J].Nature Communication,2011,2(210):1-5.

[1] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[2] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[3] 高岗,向宝力,王轩,王熠,周然然,马万云,任江铃,赵克. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究[J]. 天然气地球科学, 2016, 27(11): 1963-1969.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[2] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[3] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[4] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356 -365 .
[5] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781 -1796 .
[6] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .
[7] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810 -1820 .
[8] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829 -1838 .
[9] 郭佳佳,孙国强,龙国徽,管斌,康健,夏维民,陈波,史基安. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学, 2017, 28(12): 1839 -1845 .
[10] 罗情勇,郝婧玥,李可文,戴娜,栾进华,程礼军,张志平,胡科,钟宁宁. 重庆地区五峰组—龙马溪组页岩笔石光学特征及其在成熟度评价中的应用[J]. 天然气地球科学, 2017, 28(12): 1855 -1863 .