天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例

杜洋1,2,樊太亮1,2,高志前1,2   

  1. 1.中国地质大学(北京)能源学院, 北京 100083;
    2.中国地质大学(北京)海相储层演化与油气富集机理教育部重点实验室, 北京 100083
  • 收稿日期:2015-11-25 修回日期:2016-01-17 出版日期:2016-08-10 发布日期:2016-08-10
  • 作者简介:杜洋(1990-),男,辽宁盘锦人,博士研究生,主要从事碳酸盐岩沉积储层研究. E-mail:duyang9012@163.com.
  • 基金资助:
    国家自然科学基金(编号:41102087);国家重点基础研究发展规划(“973”)项目(编号:2012CB214802)联合资助.

Geochemical characteristics and their implications to diagenetic environment of Lower-Middle Ordovician carbonate rocks,Tarim Basin,China:A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop

Du Yang1,2,Fan Tai-liang1,2,Gao Zhi-qian1,2   

  1. 1.School of Energy Resources,China University of Geosciences,Beijing 100083,China;
    2.Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism,
    Ministry of Education,China University of Geosciences,Beijing 100083,China
  • Received:2015-11-25 Revised:2016-01-17 Online:2016-08-10 Published:2016-08-10

摘要: 利用薄片、碳氧稳定同位素、微量元素等测试资料,以巴楚大板塔格与阿克苏蓬莱坝剖面中下奥陶统碳酸盐岩为研究对象,系统报道了岩石学与地球化学的各种特征,分析了不同特征所表征的成岩环境。研究表明:(1)碳、氧同位素垂向上整体表现为埋藏成岩环境,鹰山组顶部、蓬莱坝组中部以及顶部呈现出淡水成岩环境特征,鹰山组中部与蓬莱坝组底部显示为海水成岩环境,鹰山组下部和上部表现为海水成岩环境背景下短期受到淡水影响,白云岩δ18O值、δ13C值高于灰岩,鹰山组白云岩δ13C值低于蓬莱坝组白云岩;(2)不同类型白云岩Sr含量呈现规律性。还原环境敏感元素富集在鹰山组中—粗晶白云岩与蓬莱坝组顶部粉—细晶白云岩,氧化环境敏感元素富集在鹰山组藻砂屑云质灰岩、蓬莱坝组细晶夹自形中晶白云岩和砂屑幻影白云岩;(3)白云岩化的过程是LREE亏损的过程。一间房组生屑灰岩具较高的∑REE,MREE略富集,Ce负异常程度高,蓬莱坝组下部残余结构云岩REE配分继承颗粒灰岩。鹰山组下部藻泥晶砂屑灰岩与云质砂屑灰岩REE配分相似,∑REE具有随水体深度增加而减小的趋势,LREE富集,HREE亏损,Gd正异常。鹰山组中—粗晶白云岩与蓬莱坝组顶部粉_细晶白云岩REE配分相似,MREE富集。鹰山组与蓬莱坝组细晶—中晶白云岩具明显Eu负异常。

关键词: 塔里木盆地, 中下奥陶统, 碳酸盐岩, 碳氧同位素, 微量元素, 稀土元素, 成岩环境

Abstract: Based on the analytical data of thin section,carbon and oxygen stable isotopes and trace elements,this study reported various characteristics of petrology and geochemistry and the analysis of the different features to characterize the diagenetic environment,taking Lower-Middle Ordovician carbonate rocks of Bachu Dabantage outcrop and Aksu Penglaiba outcrop as objects.Research shows:(1)Overall,carbon and oxygen isotopes perform as the burial diagenetic environment vertically.Meteoric diagenetic environment was shown at the top of Yingshan Formation,the top and the middle part of Penglaiba Formation.Marine diagenetic environment was shown at the middle of Yingshan Formation and the bottom of Penglaiba Formation.Mixed diagenetic environment occurred at the upper and lower parts of Yingshan Formation.δ18O and δ13C values are higher in dolomite than that in limestone.δ13C value in dolomite is higher of Yingshan Formation than that of Penglaiba Formation.(2)Sr content in various dolomites shows regularity.Reductive environment sensitive element concentrate in the medium-coarse grain dolomite and powder-fine grain dolomite.Oxidation environment sensitive elements enrich in algal calcarenite,fine crystal-the microtek dolomite and the phantom dolomite.(3)The process of dolomization is LREE loss process.Raw crumbs limestone shows high ∑REE,MREE enrichment and its Ce negative anomaly degree is high.REE partition of phantom dolomite inherits that of granular limestone.REE partition of algal micritic calcarenite and algal dolomitic calcarenite are the same,with enrichment of LREE,HREE loss and Gd positive anomaly.Their ∑REE increases with the decreace of water depth.REE partition of medium-coarse grain dolomite and powder-fine grain dolomite are the same,with enrichment of MREE.Fine-microtek dolomite has Eu negative anomaly.

Key words: Tarim Basin, Lower-Middle Ordovician, Carbonate rocks, Carbon and oxygen isotope, Trace elements, REE, Diagenetic environment

中图分类号: 

  • TE122.2+3

[1]Chen Yali,Chu Xuelei,Zhang Xingliang,et al.Carbon isotopes,sulfur isotopes,and trace elements of the dolomites from the Dengying Formation in Zhenba area,southern Shaanxi:Implications for shallow water redox conditions during the terminal Ediacaran[J].Science China:Earth Science,2015,45(7):963-981.[陈雅丽,储雪蕾,张兴亮,等.陕南镇巴地区灯影组白云岩的碳、硫同位素和微量元素指示:埃迪卡拉纪末期浅海的氧化还原环境[J].中国科学:地球科学,2015,45(7):963-981.]
[2]Qiao Zhanfeng,Shen Anjiang,Zheng Jianfeng,et al.Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J].Journal of Palaeogeography,2012,14(1):21-32.[乔占峰,沈安江,郑剑锋,等.塔里木盆地下奥陶统白云岩类型及其成因[J].古地理学报,2012,(1):21-32.]
[3]Zheng Jianfeng,Shen Anjiang,Chen Yongquan,et al.Reservoir space and reservoir classification of Lower Paleozoic dolomite in the Tarim Basin[J].Natural Gas Geoscience,2015,26(7):1256-1267.[郑剑锋,沈安江,陈永权,等.塔里木盆地下古生界白云岩储集空间特征及储层分类探讨[J].天然气地球科学,2015,26(7):1256-1267.]
[4]Huang Qingyu.Dolomitization and Origin of the Cambrian-Ordovician Dolomite Reservoirs in the Central Uplift,Tarim Basin[D].Chengdu:Chengdu University of Technology,2014.[黄擎宇.塔里木盆地中央隆起区寒武—奥陶系白云石化作用及白云岩储层成因研究[D].成都:成都理工大学,2014.]
[5]Han Yinxue,Li Zhong,Han Denglin,et al.REE characteristics of matrix dolomites and its origin of Lower Ordovician in eastern Tabei area,Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2405-2416.[韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,25(10):2405-2416.]
[6]Wu Shiqiang,Zhu Jingquan,Hu Wenxuan,et al.Rare earth element geochemistry characteristics of cambrian-ordovician dolostones in the Tarim Basin and their implications for the origin[J].Geoscience,2009,23(4):638-647.[吴仕强,朱井泉,胡文瑄,等.塔里木盆地寒武系—奥陶系白云岩稀土元素特征及其成因意义[J].现代地质,2009,23(4):638-647.]
[7]Chen Yongquan,Xu Yanlong,Zhang Yanqiu,et al.Geochemistry and genesis research on Lower Ordovician limestones-dolostones transitional rocks in Tazhong-Bachu Uplift,Tarim Basin[J].Natural Gas Geoscience,2015,26(7):1344-1353.[陈永权,徐彦龙,张艳秋,等.塔中—巴楚地区下奥陶统云灰岩地球化学与成因探讨[J].天然气地球科学,2015,26(7):1344-1353.]
[8]He Dengfa,Jia Chengzao,Li Desheng,et al.Formation and evolution of polycyclic superimposed Tarim Basin[J].Oil & Gas Geology,2005,26(1):64-77.[何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):64-77.]
[9]Huang Sijing,Liu Shugen,Li Guorong,et al.Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician[J].Journal of Chengdu University of Technology:Science & Technology Edition,2004,31(1):1-7.[黄思静,刘树根,李国蓉,等.奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J].成都理工大学学报:自然科学版,2004,31(1):1-7.]
[10]Kaldi J,Gidman J.Early diagenetic dolomite cements:Examples from the permian lower magnesian limestone of england and the pleistocene carbonates of the bahamas[J].Journal of Sedimentary Research,1982,52(4):1073-1085.
[11]Sibley D F.Secular changes in the amount and texture of dolomite[J].Geology,1991,19(2):151-154.
[12]Yao Chunyan,Ma Dongsheng,Ding Haifeng,et al.Reconstruction of the Early Cambrian carbonate sedimentary environment in Akesu area of Xinjiang,China:Evidences from trace elements and carbon isotope excursion[J].Geochimica,2011,40(1):63-71.[姚春彦,马东升,丁海峰,等.新疆阿克苏地区早寒武世碳酸盐岩沉积环境:微量元素和碳同位素证据[J].地球化学,2011,40(1):63-71.]
[13]Kaufman A J,Jacobsen S B,Knoll A H.The Vendian record of Sr and C isotopic variations in seawater:Implications for tectonics and paleoclimate[J].Earth & Planetary Science Letters,1993,120(3/4):409-430.
[14]Jacobsen S B,Kaufman A J.The Sr,C and O isotopic evolution of Neoproterozoic seawater[J].Chemical Geology,1999,161(1-3):37-57.
[15]Kaufman A J,Knoll A H.Neoproterozoic variations in the C-isotopic composition of seawater:Stratigraphic and biogeochemical implications[J].Precambrian Research,1995,73(1-4):27-49.
[16]Banner J L,Hanson G N,Meyers W J.Fluid-rock interaction history of regionally extensive dolomites of the Burlington-Keokuk Formation (Mississippian):Isotopic evidence[J].Special Publications,1988,43(3):97-113.
[17]Shields G,Stille P.Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J].Chemical Geology,2001,175(1):29-48.
[18]Moore C H.Carbonate Reservoirs:Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework[M].Nether-Lands:Elsevier Science,2001.
[19]Keith M L,Weber J N.Carbon and oxygen isotopic composition of selected limestone and fossils[J].Acta Geochimica et Cosmochimica,1964,28(10/11):1787-1816.
[20]Chen Rongkun.Application of stable oxygen and carbon isotope in the research of carbonate diagenetic environment[J].Acta Sedimentologica Sinica,1994,12(4):11-21.[陈荣坤.稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J].沉积学报,1994,12(4):11-21.]
[21]Li Shuangying.The geochemical characteristics of trace elements in Carboniferous carbonate rocks in Lower Yangtze Basin[J].Journal of Hefei University of Technology:Science & Technology Edition,2000,23(5):654-659.[李双应.LYB石炭系碳酸盐岩微量元素地球化学特征[J].合肥工业大学学报:自然科学版,2000,23(5):654-659.]
[22]Ni Shanqin,Hou Quanlin,Wang Anjian,et al.Geochemical characteristics of carbonate rocks and its geological implications:Taking the Lower Palaeozoic carbonate rock of Beijing area as an example[J].Acta Geologica Sinica,2011,84(10):1510-1516.[倪善芹,侯泉林,王安建,等.碳酸盐岩中锶元素地球化学特征及其指示意义——以北京下古生界碳酸盐岩为例[J].地质学报,2011,84(10):1510-1516.]
[23]Yu Ye,Zhang Changmin,Li Shaohua,et al.Application of element geochemistry in the identification of sequence stratigraphy[J].Journal of China Coal Society,2014,39(supplement 1):204-211.[余烨,张昌民,李少华,等.元素地球化学在层序识别中的应用[J].煤炭学报,2014,39(增刊 1):204-211.]
[24]Kimura H,Watanabe Y S.Oceanic anoxia at the Precambrian-Cambrian boundary[J].Geology,2001,29(11):995-998.
[25]Guo Q,Shields G A,Liu C,et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J].Palaeogeography Palaeoclimatology Palaeoecology,2007,254(254):194-216.
[26]Alibo D S,Nozaki Y.Rare earth elements in seawater:Particle association,shale-normalization,and Ce oxidation[J].Geochimica Cosmochimica Acta,1999,63(supplement 3/4):363-372.
[27]Lawrence M G,Greig A,Collerson K D,et al.Rare earth element and yttrium variability in South East Queensland waterways[J].Aquatic Geochemistry,2006,12(1):39-72.
[28]McLennan S.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J].Reviews in Mineralogy,1989,21(8):169-200.

[1] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[2] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
[3] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[4] 李长海, 赵伦, 李伟强, 李建新, 丁宇韬, 李昂, 祁永平. 碳酸盐岩缝合线研究进展及对油气开发的意义[J]. 天然气地球科学, 2019, 30(4): 493-502.
[5] 唐鑫萍, 王冠群, 钱茂路, 张喜满, 杨博贤. 三水盆地古近系布三段砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2019, 30(3): 353-360.
[6] 文开丰, 杨国平, 高君微, 郝玉鸿, 白慧, 张银德, 叶葱林, 孙龙. 鄂尔多斯盆地榆林气田马五 1+2气藏不同地质储量计算及采收率评价[J]. 天然气地球科学, 2019, 30(2): 266-273.
[7] 陈永权, 严威, 韩长伟, 闫磊, 冉启贵, 亢茜, 何皓, 马源. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1): 39-50.
[8] 王帅, 王甘露, 秦政, 高泽远, 罗腾. 黔北地区茅口组古岩溶储层稀土元素地球化学特征[J]. 天然气地球科学, 2019, 30(1): 143-150.
[9] 张荣虎, 王珂, 王俊鹏, 孙雄伟, 李君, 杨学君, 周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[10] 王清龙, 林畅松, 李浩, 韩剑发, 孙彦达, 何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[11] 吕正祥, 王先东, 吴家洋, 卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[12] 朱光有, 曹颖辉, 闫磊, 杨海军, 孙崇浩, 张志遥, 李婷婷, 陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[13] 周波, 曹颖辉, 齐井顺, 黄世伟, 刘策, 贾进华, 陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[14] 王珊, 曹颖辉, 杜德道, 王石, 李洪辉, 董洪奎, 严威, 白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[15] 曹颖辉, 李洪辉, 闫磊, 王洪江, 张君龙, 杨敏, 赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[6] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[7] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[8] 王宇超;牛滨华;张年春;马龙;王建华;. 转换波三维初至静校正方法在SLG气区的应用[J]. 天然气地球科学, 2006, 17(2): 272 -275 .
[9] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .
[10] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .