天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于页岩储层各向异性的双重介质模型和渗流模拟

刘卫群1,2,王冬妮2,苏强2   

  1. 1.中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏  徐州 221116;
    2.中国矿业大学力学与建筑工程学院,江苏  徐州221116
  • 收稿日期:2015-06-18 修回日期:2016-04-20 出版日期:2016-08-10 发布日期:2016-08-10
  • 作者简介:刘卫群(1970-),男,上海人,教授,博士生导师,主要从事计算岩石力学、岩体稳定和渗流等研究. E-mail:weiqun_liu@126.com.
  • 基金资助:
    国家“973”计划(编号:2015CB251602;2009CB219605);江苏省自然科学基金(编号:BK20141125)联合资助.

Dual media model of shale layer with anisotropy involved and its simulation on gas migration

Liu Wei-qun1,2,Wang Dong-ni2,Su Qiang2   

  1. 1.State Key Lab for Geomechanics & Deep Underground Engineering,CUMT,Xuzhou 221116,China;
    2.School of Mechanics & Civil Engineering,CUMT,Xuzhou 221116,China
  • Received:2015-06-18 Revised:2016-04-20 Online:2016-08-10 Published:2016-08-10

摘要: 页岩储层渗透性的准确预测是优化压裂手段和确定页岩气开采方案的前提。综合考虑地质条件、应力水平和解吸吸附等影响,现有的许多预测模型仍有改进提高的空间。基于双重介质理论,引入裂隙法向弹性模量和渗透率各向异性,分别推导出基质和裂隙的孔隙度和渗透率表达式,联合考虑解吸吸附和介质间质量交换的流固耦合控制方程,开展针对页岩气储层的渗流数值模拟。结果表明,储层压力沿3个主渗透系数方向并非均匀分布,开采周期内,井周水平方向的页岩气开发程度不高,各向异性程度增加明显减小页岩气井的产气速率,垂直水平渗透率的3倍差异也会导致产气速率明显减半。

关键词: 双重孔隙介质, 渗透率, 各向异性, 解吸吸附, 数值模拟

Abstract: It is necessary to accurately foresee the permeability of shale layers in fracturing optimization and gas-exploiting arrangement.Since integrating and reflecting all the influences of geological conditions,in-situ stress levels,adsorption-desorption effects on modeling is a progressive procedure,most of the permeability-foreseeing methods published nowadays could be improved naturally.In this paper,based on dual media theory,we firstly introduced a normal crack elastic modulus and considered infiltration anisotropy,and hence developed new porosity and permeability functions respectively for the matrix or fractures.After that,we employed them to build hydro-mechanical coupling equations with gas desorption and pore-fracture mass exchange.Finally,all the equations were transformed and utilized to simulate shale gas migration in the reservoir.The results show that reservoir pressure is not homogeneously distributed along three principal directions of permeability;within a well-service cycle,the developing degree of shale gas is not high in the horizontal direction around the well;Anisotropy upgrading obviously decreases gas production rate,and surprisingly a 3∶1 vertical-horizontal permeability difference would lead to a half decrease of gas production rate.

Key words: Dual porosity media, Permeability, Anisotropy, Adsorption-desorption, Numerical simulation

中图分类号: 

  • TE311

[1]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Shale gas exploration and development technical progress[J].Natural Gas Geoscience,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[ J] .天然气地球科学,2011,22(3):511-517.]
[2]Kazemi H.Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J].Society of Petroleum Engineers Journal,1969,9(4):451-462.
[3][JP2]Gu F,Chalaturnyk R J.Analysis of coalbed methane production by reservoir and geomechanical coupling simulation[J].Journal of Canadian Petroleum Technology,2005,44(10):33-42.[JP]
[4]Robertson E P,Christiansen R L.A Permeability Model for Coal and Other Fractured Sorptive-Elastic Media[J].SPE Journal,2008,13(3):314-324.
[5]Ma Q,Harpalani S,Liu S.A simplified permeability model for coalbed methane reservoirs based on matchstick strain and constant volume theory[J].International Journal of Coal Geology,2011,85(1):43-48.
[6][JP2]Wu Jian,Chang Yuwen,Liang Tao,et al.Shale gas flow model in matrix nanoscale pore[J].Natural Gas Geoscience,2015,26(3):575-579.[吴剑,常毓文,梁涛,等.页岩气在基质纳米孔隙中的渗流模型[J].天然气地球科学,2015,26(3):575-579.][JP]
[7]Wu Y,Liu J,Elsworth D,et al.Dual poroelastic response of a coal seam to CO2 injection[J].International Journal of Greenhouse Gas Control,2010,4(4):668-678.
[8]Connell L D,Lu M,Pan Z.An analytical coal permeability model for tri-axial strain and stress conditions[J].International Journal of Coal Geology,2010,84(2):103-114.
[9]Wei Jianping,Qin Hengjie,Wang Dengke,et al.Dynamic
[HJ1.54mm]
per
meability model for coal containing gas[J].Journal of China Coal Society,2015,40(7):1555-1561.[魏建平,秦恒洁,王登科,等.含瓦斯煤渗透率动态演化模型[J].煤炭学报,2015,40(7):1555-1561.][JP]
[10]Zhang Chunhui,Zhao Yingfei,Wang Laigui,et al.Permeability evolution model of mined coal rock Rock and its numerical simulation[J].Rock and Soil Mechanics,2015,36(8):2409-2418.[张春会,赵莺菲,王来贵,等.采动煤岩渗透率演化模型及数值模拟[J].岩土力学,2015,36(8):2409-2418.]
[11]Gu F,Chalaturnyk R.Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation[J].Journal of Petroleum Science and Engineering,2010,74(3):113-131.
[12]Wu Y,Liu J,Elsworth D,et al.Development of anisotropic permeability during coalbed methane production[J].Journal of Natural Gas Science and Engineering,2010,2(4):197-210.
[13]Liu H H,Rutqvist J.A new coal-permeability model:internal swelling stress and fracture-matrix interaction[J].Transport in Porous Media,2010,82(1):157-171.
[14]Li Yajun,Yao Jun,Huang Zhaoqin,et al.Estimating equivalent permeability of fractured-vuggy media based on coupled Darcy-Stokes model[J].Journal of China University of Petroleum,2011,35(2):91-95.[李亚军,姚军,黄朝琴,等.基于Darcy-Stokes耦合模型的缝洞型介质等效渗透率分析[J].中国石油大学学报,2011,35(2):91-95.]
[15][JP2]Shi J Q,Durucan S.Drawdown induced changes in permeability of coalbeds:A new interpretation of the reservoir response to primary recovery[J].Transport in Porous Media,2004,56(1):1-16.[JP][HJ2mm]
[16]Shi J Q,Durucan S.A model for changes in coalbed permeability during primary and enhanced methane recovery[J].SPE Reservoir Evaluation and Engineering,2005,8(4):291-299.

[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 任茜莹, 代金友, 穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[3] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[4] 李滔, 李闽, 张烈辉, 田山川, 赵潇雨, 郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[5] 游利军, 王哲, 康毅力, 张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[6] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[7] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[8] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[9] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[10] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[11] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[12] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[13] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[14] 赵军,范家宝,代新雲,何胜林,张海荣. 复杂非均质储层渗透率模型的分类评价方法[J]. 天然气地球科学, 2017, 28(2): 183-188.
[15] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 付广,苏玉平 . 控制地层剖面中天然气扩散散失的地质因素[J]. 天然气地球科学, 2004, 15(1): 58 -61 .
[3] 王晓锋;刘文汇;刘全有;张殿伟;南青云;. 有机体及其沉积演化产物的氢同位素地球化学研究进展[J]. 天然气地球科学, 2004, 15(3): 311 -316 .
[4] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[5] 任以发;. 黄桥二氧化碳气田成藏特征与进一步勘探方向[J]. 天然气地球科学, 2005, 16(5): 632 -636 .
[6] 李小彦, 解光新. 煤储层吸附时间特征及影响因素[J]. 天然气地球科学, 2003, 14(6): 502 -505 .
[7] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[8] 钱诗友;曾溅辉;林会喜;孙锡文 . 辽东东地区石油运移和聚集物理模拟实验及机理分析[J]. 天然气地球科学, 2008, 19(05): 604 -610 .
[9] 孙德强;张涛;梁彬;祁文珍;刘健;翟志锋;杨联系;刘志舟;赵凡 . 柴达木盆地北缘油气成藏特征[J]. 天然气地球科学, 2008, 19(05): 652 -656 .
[10] 朱俊章 施和生 汪建蓉 龙祖烈. 珠江口盆地陆相原油轻烃环优势及其成因[J]. 天然气地球科学, 2009, 20(1): 15 -19 .