天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

腐泥型干酪根热降解成气潜力及裂解气判识的实验研究

谢增业1,2,李志生1,2,魏国齐1,2,李剑1,2,王东良1,2,王志宏1,2,董才源1,2   

  1. 1.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007;
    2.中国石油天然气集团公司天然气成藏与开发重点实验室, 河北 廊坊 06500
  • 收稿日期:2015-07-01 修回日期:2015-10-22 出版日期:2016-06-10 发布日期:2016-06-10
  • 作者简介:谢增业(1965-),男,广东大埔人,高级工程师,博士,主要从事油气地球化学与油气成藏综合研究. E-mail:zyxie006@126.com.
  • 基金资助:
    国家科技重大专项(编号:2011ZX05007-002);中国石油股份公司科技项目(编号:2014B-0607)联合资助.

Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas

Xie Zeng-ye1,2,Li Zhi-sheng1,2,Wei Guo-qi1,2,Li Jian1,2,Wang Dong-liang1,2,Wang Zhi-hong1,2,Dong Cai-yuan1,2   

  1. 1.Langfang Branch,Reasearch Institute of Petroleum Exploration and Development,PetroChina,Langfang 065007,China;
    2.Laboratory of Gas Reservoir Formation and development,CNPC,Langfang 065007,China
  • Received:2015-07-01 Revised:2015-10-22 Online:2016-06-10 Published:2016-06-10

摘要: 腐泥型有机质在成烃演化过程中以先生成原油再裂解成气已有共识,但有多大的比例是由干酪根直接降解生成以及如何鉴别尚存异议。选取华北地区下马岭组低成熟腐泥型页岩,采用高温高压黄金管体系及常规高压釜热模拟实验装置,对同源于该页岩的原始干酪根、残余干酪根和原油开展了生气模拟实验。结果表明:(1)腐泥型有机质生油高峰期后,干酪根直接降解成气量占总生气量的20%左右;原油裂解主成气期为422~566℃(RO=1.3%~2.5%),生气量占裂解气总量的85.5%。(2)干酪根降解气和原油裂解气Ln(C1/C2)值与Ln(C2/C3)值均随演化程度增高而增大,但受原油和干酪根结构差异、裂解生气速率及所需活化能大小的影响,过成熟阶段,干酪根降解气Ln(C2/C3)值逐渐增大,原油裂解气Ln(C2/C3)值基本稳定,且低升温速率的Ln(C1/C2)值比高升温速率的值大。(3)新建考虑演化阶段的裂解气判识图版,认为四川盆地震旦系—寒武系天然气主要为原油裂解气。研究成果进一步明确了腐泥型烃源岩发育区,高演化阶段以寻找原油裂解气为主要目标,而非烃源岩晚期干酪根降解气,并可为有机质全过程生烃演化轨迹曲线的确定提供重要依据。

关键词: 腐泥型有机质, 干酪根降解气, 原油裂解气, 成因判识, 震旦系—寒武系, 高石梯—磨溪, 四川盆地

Abstract: It is the consensus that sapropelic matter generated oil at first and then the oil cracked into gas in the process of hydrocarbon-generation evolution,however,there is still dispute that how much gas is generated by kerogen directly and how to identify it.The experimental samples are low mature sapropelic shale in Xiamaling Formation in North China,the experimental devices are high temperature-pressure gold tube system and normal autoclave thermal simulation,gas generation simulation experiments of original kerogen,residual kerogen and oil from the same shale are developed.It concluded that:(1)the gas generated from kerogen directly accounts for about 20% after the oil generation peak period,The main gas generating stage is from 422-566℃(RO=1.3%-2.5%),and the amount takes up 85.5%.(2)the value of Ln(C1/C2) and Ln(C2/C3) increases with the growth of evolution degree for both kerogencracking gas and oil cracking gas.However,at over mature period,the value of Ln(C2/C3) increases for the kerogencracking gas while the value for oil cracking gas keeps stable,and the value of ln(C1/C2) at low heating rateislarger than that at high heating rate.(3)the new oil cracking gas discrimination chart is established consideringevolution degree.The gas from Sinianand Cambrian in Sichuan Basin is oil cracking gas from the above understanding.The research resultsreveal that not kerogen cracking gas but oil cracking gas is the main target at high evolution degree where sapropelic matter developed,and these can provide important evidence for the determination of whole process hydrocarbon-generation evolutionlocus curve of organic matter.

Key words: Sapropelic organic matter, Kerogen degrading gas, Oil cracking gas, Genetic discrimination, Sinian-Cambrian Formation, Gaoshiti-Moxi region, Sichuan Basin

中图分类号: 

  • TE122.1+13

[1]Du Jinhu,Zou Caineng,Xu Chunchun,et al.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(3):268-277.[杜金虎,邹才能,徐春春,等.川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J].石油勘探与开发,2014,41(3):268-277.]
[2]Zou Caineng,Du Jinhu,Xu Chunchun,et al.Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2014,41(3):278-293.[邹才能,杜金虎,徐春春,等.四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发,2014,41(3):278-293.]
[3]Wei Guoqi,Du Jinhu,Xu Chunchun,et al.Reservoir characteristics and accumulation modes of large gas fields in Sinian-Cambrian Formation Sichuan Basin[J].Acta Petrolei Sinica,2015,36(1):1-14.[魏国齐,杜金虎,徐春春,等.四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J].石油学报,2015,36(1):1-14.]
[4]Burnham A K.A simple kinetic model of petroleum formation and cracking[J].Geochim Cosmochim Acta,1989,43:1979-1988.
[5]Prinzhofer A A,Huc A Y.Genetic and post-genetic molecular and isotopic fractionations in natural gases[J].Chemical Geology,1995,126:281-290.
[6]Behar F,Kressmann S,Rudkiewicz J L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1991,19:173-189.
[7]Zhao Mengjun,Zeng Fan’gang,Qin Shengfei,et al.Two pyrolytic gases found and proved in Tarim Basin[J].Natural Gas Industry,2001,21(1):35-39.[赵孟军,曾凡刚,秦胜飞,等.塔里木发现和证实两种裂解气[J].天然气工业,2001,21(1):35-39.]
[8]Chen Shijia,Fu Xiaowen,Ma Lining,et al.Genetic identification method of kerogen-cracked gases and oil-cracked gases[J].Petroleum Geology & Experiment,2002,24(4):364-366,371.[陈世加,付晓文,马力宁,等.干酪根裂解气和原油裂解气的成因判识方法[J].石油实验地质,2002,24(4):364-366,371.]
[9]Xie Zengye,Tian Shicheng,Li Jian,et al.Geochemical characteristics and origin of Feixianguan Formation oolitic shoal natural gases in northeastern Sichuan Basin[J].Geochimica,2004,33(6):567-573.[谢增业,田世澄,李剑,等.川东北飞仙关组鲕滩天然气地球化学特征与成因[J].地球化学,2004,33(6):567-573.]
[10]Wei Guoqi,Xie Zengye,Bai Guilin,et al.Organic geochemical characteristics and origin of natural gas in the Sinian-Lower Paleozoic reservoirs,Sichuan Basin[J].Natural Gas Industry,2014,34(3):44-49.[魏国齐,谢增业,白贵林,等.四川盆地震旦系—下古生界天然气地球化学特征及成因判识[J].天然气工业,2014,34(3):44-49.]
[11]Lou Bing,Luo Wenjun,Wang Zhiwen,et al.Formation mechanism of the Sinian natural gases reservoir in the Leshan-Longnvsi paleo-uplift,Sichuan Basin[J].Natural Gas Geoscience,2015,26(3):444-455.[罗冰,罗文军,王文之,等.四川盆地乐山—龙女寺古隆起震旦系气藏形成机制[J].天然气地球科学,2015,26(3):444-455.]
[12]Gao Bo.Geochemical characteristics of shale gas from lower Silurian Longmaxi Formation in the Sichuan Basin and its Geological significance[J].Natural Gas Geoscience,2015,26(6):1173-1182.[高波.四川盆地龙马溪组页岩气地球化学特征及其地质意义[J].天然气地球科学,2015,26(6):1173-1182.]
[13]Wang Yunpeng,Zhao Changyi,Wang Zhaoyun,et al.Identification of marine natural gases source from different parent materials[J].Science in China :Series D,2007,37(supplement Ⅱ):125-140.[王云鹏,赵长毅,王兆云,等.海相不同母质来源天然气的鉴别[J].中国科学:D辑,2007,37(增刊Ⅱ):125-140.]
[14]Zhang Min,Huang Guanghui,Hu Guoyi,et al.Study on the geochemical characteristics of oil-cracking gas and kerogen-cracking gas(I):Simulation and product analysis[J].Science in China :Series D ,2008,38(supplement II):1-8.[张敏,黄光辉,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究(Ⅰ)—模拟实验和产物分析[J].中国科学:D辑,2008,38(增刊II ):1-8.]
[15]Huang Guanghui,Zhang Min,Hu Guoyi,et al.Study on the geochemical characteristics of oil-cracking gas and kerogen-cracking gas(II):Discrimination of oil-cracking gas and kerogen-cracking gas[J].Science in China:Series D,2008,38(supplement II):9-16.[黄光辉,张敏,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究(Ⅱ)—原油裂解气和干酪根裂解气的区分方法[J].中国科学:D辑,2008,38(增刊Ⅱ):9-16.]
[16]Wang Tongshan,Geng Ansong,Xiong Yongqiang,et al.Kinetic simulation study on generation of gaseous hydrocarbons from the pyrolysis of marine crude oil and its asphaltene in Tarim Basin[J].Acta Petrolei Sinica,2008,29(2):167-172.[王铜山,耿安松,熊永强,等.塔里木盆地海相原油及其沥青质裂解生气动力学模拟研究[J].石油学报,2008,29(2):167-172.]
[17]Guo Liguo,Xiao Xianming,Tian Hui.Laboratory studies of differences between oil-derived and kerogen maturation gases[J].Petroleum Geology & Experiment,2011,33(4):428-436.[郭利果,肖贤明,田辉.原油裂解气与干酪根裂解气差异实验研究[J].石油实验地质,2011,33(4):428-436.]
[18]Wang Zhenpin,Fu Xiaotai,Lu Shuangfan,et al.An analogue experiment of gas generating by crude oil craching,characters of products and its significance[J].Natural Gas Industry,2011,21(3):12-15.[王振平,付晓泰,卢双舫,等.原油裂解成气模拟实验、产物特征及其意义[J].天然气工业,2011,21(3):12-15.]
[19]Wang Jian,Wang Quan,Shi Yulei,et al.The cause of Ultra deep-seated oil and gas of Paleogene in Baxian Sag[J].Natural Gas Geoscience,2015,26(1):21-27.[王建,王权,师玉雷,等.冀中坳陷霸县凹陷古近系超深层油气成因分析[J].天然气地球科学,2015,26(1):21-27.]
[20]Tian Hui,Xiao Xianming,Yang Liguo,et al.Pyrolysis of oil at high temperatures:Gas potentials,chemical and carbon isotopic signatures[J].Chinese Science Bulletin,2009,54(6):781-786.[田辉,肖贤明,杨立国,等.原油高温裂解生气潜力与气体特征[J].科学通报,2009,54(6):781-786.]
[21]Ma Anlai.Kinetics of oil-cracking of different types of marine oils from Tahe Oilfied,Tarim Basin,NW China[J].Natural Gas Geoscience,2015,26(6):1120-1128.[马安来.塔河油田不同类型海相原油裂解动力学分析[J].天然气地球科学,2015,26(6):1120-1128.]
[22]Geng Xinhua,Geng Ansong.Kinetic simulating experiment on secondary thermal clacking of the bitumen generated from marine carbonate rock[J].Natural Gas Geoscience,2008,19(5):695-700.[耿新华,耿安松.源自海相碳酸盐岩烃源岩原油裂解成气的动力学研究[J].天然气地球科学,2008,19(5):695-700.]
[23]Sun Mengmeng,Mi Jingkui,Feng Zihui,et al.Comparison of the characteristics oh hydrocarbons generated by type Ⅰ of organic matter using two different experiment methods in gold tube system[J].Natural Gas Geoscience,2015,26(6):1156-1164.[孙萌萌,米敬奎,冯子辉,等.黄金管体系中Ⅰ型有机质2种模拟方法生烃特征对比[J].天然气地球科学,2015,26(6):1156-1164.]
[24]Wang Yunpeng,Zhao Changyi,Wang Zhaoyun,et al.Kinetic method for determining the main gas generation period of marine organic matters and its application[J].Petroleum Exploration and Development,2005,32(4):153-158.[王云鹏,赵长毅,王兆云,等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用[J].石油勘探与开发,2005,32(4):153-158.]
[25]Xie Zengye,Wei Guoqi,Li Jian,et al.Feixianguan Formation excellent hydrocarbon source rocks developed in northwest Sichuan[J].Natural Gas Industry,2005,25( 9):26-28.[谢增业,魏国齐,李剑,等.川西北地区发育飞仙关组优质烃源岩[J].天然气工业,2005,25( 9):26-28.]
[26]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Oil cracking gas is an important way for the gas generation from marine source rocks[J].Chinese Science Bulletin,2006,51(5):589-595.[赵文智,王兆云,张水昌,等.油裂解生气是海相气源灶高效成气的重要途径[J].科学通报,2006,51(5):589-595.]
[27]Geng Xinhua.Kinetic Study of the Hydrocarbon Generation from Marine Carbonate Source Rocks and its Geological Applications[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2006.[耿新华.海相碳酸盐岩烃源岩热解动力学研究及其应用[D].广州:中国科学院广州地球化学研究所,2006.]
[28]Wang Yingchao,Jin Yongbin,Shui Leilei,et al.Study on kinetics of high-purity ethane and propane cracking[J].Fault-Block Oil & Gas Field,2013,20(3):311-315.[王英超,靳永斌,税蕾蕾,等.高纯气体乙烷及丙烷裂解的动力学研究[J].断块油气田,2013,20(3):311-315.]
[29]Li Jian,Wei Guoqi,Xie Zengye,et al.Accumulation mechanism and main controlling factors of large tight sandstone gas fields in China:Cases study on Ordos Basin and Sichuan Basin[J].Acta Petrolei Sinica,2013,34(supplement 1):14-28.[李剑,魏国齐,谢增业,等.中国致密砂岩大气田成藏机理与主控因素——以鄂尔多斯盆地和四川盆地为例[J].石油学报,2013,34(增刊1):14-28.]
[30]Shen Ping,Xu Renfen,Li Zongyin.Reservoir formation conditions of Wubaiti Gasfield in east Sichuan and its efficient exploration experiences[J].Natural Gas Industry,1998,18(6):5-9.[沈平,徐仁芬,李宗银.川东五百梯气田成藏条件及高效勘探经验[J].天然气工业,1998,18(6):5-9.]

[1] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[2] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[3] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[4] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[5] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[6] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[7] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[8] 刘树根, 孙玮, 宋金民, 雍自权, 王浩, 赵聪. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167.
[9] 梁霄, 童明胜, 梁锋, 邓宾, 刘微, 李飞, 马文辛, 刘博文. 晚二叠世盐亭—蓬溪拉张槽东段特征及其对四川盆地中部长兴组油气成藏的控制作用[J]. 天然气地球科学, 2019, 30(2): 176-189.
[10] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[11] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[12] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[13] 谢武仁, 杨威, 李熙喆, 魏国齐, 马石玉, 文龙, 郭振华. 四川盆地川中地区寒武系龙王庙组颗粒滩储层成因及其影响[J]. 天然气地球科学, 2018, 29(12): 1715-1726.
[14] 朱华, 杨光, 苑保国, 应丹琳, 戴鑫, 周红飞, 徐世琦, 谈健康. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1475-1485.
[15] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张水昌,赵文智,王飞宇,陈建平,肖中尧,钟宁宁,宋孚庆. 塔里木盆地东部地区古生界原油裂解气成藏历史分析――以英南2气藏为例[J]. 天然气地球科学, 2004, 15(5): 441 -451 .
[2] 郑军卫. 1991~2000年世界天然气生产一览表(108m3)[J]. 天然气地球科学, 2002, 13(3-4): 73 -81 .
[3] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[4] . 缘何说21世纪是天然气时代[J]. 天然气地球科学, 2000, 11(2): 24 .
[5] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271 -274 .
[6] 任以发;. 黄桥二氧化碳气田成藏特征与进一步勘探方向[J]. 天然气地球科学, 2005, 16(5): 632 -636 .
[7] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[8] 孙德强;张涛;梁彬;祁文珍;刘健;翟志锋;杨联系;刘志舟;赵凡 . 柴达木盆地北缘油气成藏特征[J]. 天然气地球科学, 2008, 19(05): 652 -656 .
[9] 晋香兰;张泓. 鄂尔多斯盆地延安组煤层对常规天然气的贡献率研究[J]. 天然气地球科学, 2008, 19(05): 662 -664 .
[10] 朱俊章 施和生 汪建蓉 龙祖烈. 珠江口盆地陆相原油轻烃环优势及其成因[J]. 天然气地球科学, 2009, 20(1): 15 -19 .