天然气地球科学

• 非常规天然气 • 上一篇    下一篇

四川盆地志留系页岩气超压形成与破坏机理及主控因素

李双建,袁玉松,孙炜,孙冬胜,金之钧   

  1. (1.中国石化石油勘探开发研究院,北京 100083;2.页岩油气富集机理与有效开发国家重点实验室,北京 100083)
  • 收稿日期:2015-09-30 修回日期:2015-12-03 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:李双建(1978-),男,河北泊头人,高级工程师,主要从事盆地构造与油气保存条件研究. E-mail:lishuangjian.syky@sinopec.com.
  • 基金资助:

    国家重点基础研究发展计划(编号:2012CB412800);国家科技重大专项(编号:2016ZX05005-001);国家自然科学基金(编号:40739904)联合资助.

The formation and destroyment mechanism of shale gas overpressureand its main controlling factors in Silurian of Sichuan Basin

Li Shuang-jian,Yuan Yu-song,Sun Wei,Sun Dong-sheng,Jin Zhi-jun   

  1. (1.Research Institute of Petroleum Exploration and Production,SINOPEC,Beijing 100083,China;2.State KeyLaboratory
    of Shale Oil and Gas Accumulation Mechanism and the Effective Development,Beijing 100083,China)
  • Received:2015-09-30 Revised:2015-12-03 Online:2016-05-10 Published:2016-05-10

摘要:

以川东焦页1井和彭页1井为解剖实例,利用声波和密度测井交会图判别页岩气超压形成机制,利用流体包裹体和PVTSIM软件恢复烃源岩生烃和地层抬升过程中页岩气层流体压力演化,通过裂缝发育特征、地层抬升时代和构造期次的研究,探讨了影响页岩气超压演变的主控因素。研究表明:四川盆地志留系页岩气气藏超压形成的机制主要是流体膨胀,流体膨胀主要是烃源岩生烃作用造成的。燕山期以来的地层抬升过程中,流体压力总体是降低的,但是由于页岩气的储层压缩回弹率低,储层连通性差且不含地层水等特点,使得流体压力的降低不足以弥补地层剥蚀的影响,造成整个抬升过程中页岩气储层的流体压力系数进一步增加。燕山期以来彭页1井区经历至少3期构造运动的改造,初始抬升期为130Ma,与之相比,焦页1井区初始抬升期为90Ma,经历的构造改造作用弱,表现为焦页1井发育低角度高导缝和很少量的高阻缝,而彭页1井发育高角度高导缝和大量高阻缝。因此,晚期构造抬升的早晚、多期应力场的叠加改造和高角度裂缝的发育程度是影响页岩气超压后期保持的控制因素。

关键词: 超压, 页岩气, 裂缝, 保存条件, 志留系, 四川盆地

Abstract:

Shale gas Well JY1 and Well PY1 eastern Sichuan Basin have been taken as examples to study the overpressure evolution in shale gas.The log intersection diagram between interval transit time and density has been used to distinguish the mechanic of overpressure.Fluid inclusion and PVTsim software have been used to recover the pressure evolution in the process of hydrocarbon generation and tectonic erosion.According to the research of fracture,time of uplift and times of tectonic deformation,the controlling factors on the evolution of shale gas overpressure have been discussed.The conclusion can be drawn that the mechanic of shale gas overpressure in Silurian is fluid expansion,which is caused by hydrocarbon generation.The fluid pressure decreased in the uplift process since Yanshanian generally.However,due to low porosity rebound ratio,poor pore connectivity and low formation water content,the decrement of fluid pressure cannot offset the effect of erosion,which caused the increasing of fluid pressure coefficient in the uplifting process.Well PY1 has been experienced three-period tectonic deformation since Yanshanian and its initial uplift time was 130Ma.In contrast,Well JY1 area has been experienced weaker tectonic deformation,and its initial uplift was 90Ma.As a result,low angel fractures and little high resistance fractures developed in Well JY1,high angle fractures and lots of high resistance fractures developed in Well PY1.It can be said that the development degree of high angel crack,time of uplifting and superposition of stress field are main reasons to affect the preservation of shale gas overpressure.

Key words: Overpressure, Shale gas, Crack, Preservation, Silurian, Sichuan Basin

中图分类号: 

  • TE122.3

[1]Wang Zhigang.Breakthrough of Fuling shale gas exploration and development and its inspiration[J].Oil & Gas Geology,2015,36(1):1-6.[王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质,2015,36(1):1-6.]
[2]Hao Fang,Zou Huayao,Lu Yongchao.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin,2013,97(8):1325-1346.
[3]Guo Xunsheng.Rules if two-factor enrichment for marine shale gas,southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2015,88(7):1209-1218.[郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报,2015,88(7):1209-1218.]
[4]Guo Tonglou,Liu Ruobing.Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in Well JY1 as an example[J].Natural Gas Geosciecnce,2013,24(4):643-651.[郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.]
[5]Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of south China[J].Acta Petrolei Sinica,2009,30(4):484-491.[聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.]
[6]Dong Dazhong,Zou Caineng,Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement 1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]
[7]O’Conner S,Swarbrick R E,Lahann R W.Geologically driven pore fluid pressure models and their implications for petroleum exploration.Introduction to thematic set[J].Geofluids,2011,11(4):343-348.
[8]Eaton B A.Graphical method predicts geopressures worldwide[J].World Oil,1976,1(6):51-56.
[9]Guo Xiaowen,He Sheng,Zheng Lunju,et al.A quantitative model for the overpressure caused by oil generation and its influential factors[J].Acta Petrolei Sinica,2011,32(4):637-644.[郭小文,何生,郑伦举,等.生油增压定量模型及影响因素[J].石油学报,2011,32(4):637-644.]
[10]Yuan Guanghui,Cao Yingchang,Jia Zhenzhen,et al.Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J].Natural Gas Geosciecnce,2015,26(1):28-42.[远光辉,操应长,贾珍臻,等.含油气盆地中深层碎屑岩储层异常高孔带研究进展[J].天然气地球科学,2015,26(1):28-42.]
[11]Osborne M J,Swarbrick R E.Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J].AAPG Bulletin,1997,81(6):1023-1041.
[12]Tingay M R P,Hillis R R,Swarbrick R E,et al.Origin of overpressure and pore pressure prediction in the Baram Delta Province,Brunei[J].AAPG Bulletin,2009,93(1):51-74.
[13]Tingay M,Hillis R,Swarbrick R,et al.“Vertically transferred” overpressures in Brunei:Evidence for a new mechanism for the formation of high magnitude overpressures[J].Geology,2007,35(11):1023-1026.
[14]Lahann R W,Swarbrick R E.Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J].Geofluids,2011,11(4):362-375.
[15]Hedberg H D.Relation of methane generation to undercompacted shales,shale diapirs,and mud volcanoes[J].AAPG Bulletin,1974,58(4):661-673.
[16]Barker C.Calculated volume and pressure changes during thermal cracking of oil to gas in reservoirs[J].AAPG Bulletin,1990,74(8):1254-1261.
[17]Yuan Haifeng,Xu Guosheng,Wang Guozhi,et al.Phase evolution during hydrocarbon accumulation and exploration prospect for Sinian reservoirs in Central Sichuan Basin,China[J].Journal of Chendu University of Technology:Science & Technology Edition,2009,36(6):662-668.[袁海锋,徐国盛,王国芝,等.川中地区震旦系油气成藏过程的相态演化与勘探前景[J].成都理工大学学报:自然科学版,2009,36(6):662-668.]
[18]Liu D H,Xiao X M,Mi J K,et al.Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software:A case study of Lower Ordovician carbonates from the Lunnan Low Uplift,Tarim Basin[J].Marine and Petroleum Geology,2003,20(1):29-43.
[19]Liu Dehan,Xiao Xianming,Tian Hui,et al.Methodology and results of dynamic and thermodynamic simulation for oil-cracked gas pool of Puguang[J].Natural Gas Geosciences,2010,21(2):175-184.[刘德汉,肖贤明,田辉,等.论普光原油裂解气藏的动力学和热力学模拟方法与结果[J].天然气地球科学,2010,21(2):175-184.]
[20]Tian Hui,Xiao Xianming,Ronald W T,et al.New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs:Implications for the in-situ accumulation of gas cracked from oils[J].AAPG Bulletin,2008,92(2):181-200.
[21]Gao Jian,He Sheng,Yi Jizheng.Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J].Oil & Gas Geology,2015,36(3):472-480.[高健,何生,易积正.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质,2015,36(3):472-480.]
[22]Fang Chaohe,Huang Zhilong,Wang Qiaozhi,et al.Cause and significance of the ultralow water saturation in gas-enriched shale reservoir[J].Natural Gas Geosciecnce,2014,25(3):471-476.[方朝亮,黄志龙,王巧智,等.富含气页岩储层超低含水饱和度成因及意义[J].天然气地球科学,2014,25(3):471-476.]
[23]Zhang Yu,Yan Jianping,Jia Xiangjuan,et al.The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations,Sichuan Basin[J].Natural Gas Geoscience,2015,26(9):1775-1762.[张瑜,闫建萍,贾祥娟,等.四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J].天然气地球科学,2015,26(9):1755-1762.]
[24]Mei Lianfu,Liu Shaoqian,Tang Jiguang,et al.Mesozoic intracontinental progressive deformation in western Hunan Hubei-eastern Sichuan provinces of China:Evidence from apatite fission track and balanced cross section[J].Earth Science:Journal of China University of Geosciences,2010,35(2):161-174.[梅廉夫,刘昭茜,汤济广,等.湘鄂西—川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学:中国地质大学学报,2010,35(2):161-174.]
[25]Wang Erchie,Meng Kai,Su Zhe,et al.Block rotation:Tectonic response of the Sichuan Basin to the southeastward growth of the Tibetan plateau along the Xianshuihe-Xiaojiang fault[J].Tectonics,2014,33(5):686-718.

[1] 徐加祥,丁云宏,杨立峰,王臻,刘哲,高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[5] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[6] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[7] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[8] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[15] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!