天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气与煤层气吸附特征对比实验研究

赵金,张遂安,曹立虎   

  1. 中国石油大学(北京)气体能源开发与利用教育部工程研究中心,中国石油大学(北京)煤层气研究中心,北京 102249
  • 收稿日期:2012-06-18 修回日期:2012-10-19 出版日期:2013-02-10 发布日期:2013-02-10
  • 通讯作者: 赵金zhaojin19881004@163.com E-mail:zhaojin19881004@163.com
  • 作者简介:赵金(1988-),男,湖北荆州人,硕士研究生,主要从事煤层气生产动态研究.E-mail:zhaojin19881004@163.com.
  • 基金资助:

    国家科技重大专项“高产水/弱含水煤储层特性排采动态预测技术”(编号:2011ZX05034-003);“深煤层储层物性及地质因素研究”(编号:2011ZX05042-002);“山西沁水盆地煤层气水平井开发示范工程”(编号:2011ZX05061);“鄂尔多斯盆地东缘煤层气开发示范工程”(编号:2011ZX05062);“山西晋城矿区一体化煤层气开发示范工程”(编号:2011ZX05063)联合资助

Comparison of Experimental Adsorption between Shale Gas and Coalbed Gas

ZHAO Jin, ZHANG Sui-an, CAO Li-hu   

  1. Coalbed Methane Research Center of China University of Petroleum (Beijing), Engineering Research Center of the Ministry of Education for Gas Energy Development and Utilization in China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2012-06-18 Revised:2012-10-19 Online:2013-02-10 Published:2013-02-10

摘要:

煤层气的吸附特征决定了煤层气的开采特征,对比分析煤层气和页岩气的吸附特征对页岩气的开采具有重要的指导作用。通过页岩和煤层的等温吸附实验分别分析了不同温度下煤层和页岩的吸附特征,页岩有机质含量和有机质成熟度对页岩吸附的影响,以及不同煤阶等温吸附特征。研究表明随着温度的升高,页岩和煤层对甲烷的吸附量呈下降趋势,但是温度对页岩的吸附影响比煤层对甲烷吸附的影响更加明显;随着RO值的逐渐增大,煤层的PL值逐渐减小,VL值逐渐增加,页岩的PL值和VL值都逐渐减小;随着煤有机质含量的增加,煤层的PL值逐渐增加,VL值逐渐减小。随着页岩有机质含量的增高,页岩的PL值和VL值都逐渐增大;煤层对甲烷的最大吸附量比页岩多,采用降压解吸的方式对煤层吸附特征影响较大,但是对页岩气的吸附特征影响较小。

关键词: 页岩气, 煤层气, 等温吸附, 有机质含量(TOC), 有机质成熟度(RO)

Abstract:

Based on coalbed methane adsorption,CBM is successfully developed.it is great effect on shale gas exploration to comparatively analysis of coal bed methane and shale gas adsorption.It is subjected to the isothermal adsorption experiment with different temperatures to describe adsorption characteristics between varioues TOC and thermal maturity shale and different rank coal.The results shows that the adsorption quantity of methane on shale and coal decrease with temperature increase,but it is more sensitive for gas shale adsorption to temperature than that for coal. PL value in coal is negatively correlated with RO and positive with organic matter content, VL value in coal is positive correlated with Ro and negative with matter content;in constrast, PL and VL of shale decrease with RO and increase with organic matter content.Methane adsorption quantity for coal is more than that for shale.It is more noticeable effect on CBM production by means of pressure step-down desorption than that on gas shale development. 

Key words: Gas shale, CBM, Isothermal adsorption, TOC, RO

中图分类号: 

  • TE135

[1]Zhang Suian,Ye Jianping,Tang Shuheng,et al.Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility experimental study[J].Natural Gas Industry,2005,25(1):44-46.[张遂安,叶建平,唐书恒,等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.]

[2]Ma Dongmin,Zhang Suian.Analysis and application of CBM desorption characteristics at rising temperature[J].China Coalbed Methan,2011,8(3):11-15.[马东明,张遂安.煤层气升温解吸特征分析与应用[J].中国煤层气,2011,8(3):11-15.]

[3]Xu Shilin,Bao Shujing.Preliminary analysis of shale gas resource potential and favorable areas in Ordos basin[J].Natural Gas Geoscience,2009,20(3):460-466.[徐世林,包书景.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J].天然气地球科学,2009,20(3):460-466.]

[4]Ma Dongmin,Zhang Suian,Wang Penggang,et al.Mechanism of coalbed methane desorption at different temperatures[J].Coal Geology & Exploration,2011,39(1):20-24.[马东明,张遂安,王鹏刚,等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,39(1):20-24.]

[5]Ma Dongmin,Zhang Suian,Lin Yabing.Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J].Journal of China Coal Society,2011,36(3):476-480.[马东明,张遂安,蔺亚兵.煤的等温吸附—解吸实验及精确拟合[J].煤炭学报,2011,36(3):476-480.]

[6]Zhao Jin,Zhang Suian,Ma Dongmin,et al.Numerical simulator study for carbon dioxide injection ECBM recovery[J].Nature Gas and Oil,2012,6(1):67-70.[赵金,张遂安,马东明,等.注二氧化碳提高煤层气采收率数值模拟[J].天然气与石油,2012,6(1):67-70.]

[7]Tongwei Zhang,Geoffrey S Ellis,Stephen C Ruppel,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.

[8]Cavenati S,Grande C A,Rodrigues A E.Adsorption equilibrium of methane,carbon dioxide and nitrogen on zeolite 13X at high pressures[J].Journal of Chemical Engineering Data,2004,(49):1095-1101.

[9]Cui X,Bustin A.M,Bustin R.Measurements of gas permeability anddiffusivity of tight reservoir rocks:different approaches and their applications[J].Geofluids,2009,(9):208-223.[10]Himeno S,Komatsu T,Fujita S.High-pressure adsorption equilibria ofmethane and carbon dioxide on several activated carbons[J].Journal of Chemical Engineering Data,2005,(50):369-376.

[11]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,(79):848-861.

[12]Lu X C,Li  F C,Watson  A.T.Adsorption measurements in Devonian shales[J].Fuel,1995,74:599-603.

[13]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26:916-927.

[14]Rowe H D,Loucks R G,Ruppel S C,et al.Mississippian Barnett Formation,Fort Worth basin,Texas:Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J].Chemical Geology,2008,257:16-25.

[15]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural Studies of Gas Shales[C].Society of Petroleum Engineers,Paper,SPE 131771,2010.

[16]Strapoc D,Mastalerz M,Schimmelmann,et al.Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian),eastern Illinois basin[J].American Association of Petroleum Geologists Bulletin,2010,94:1713-1740.

[17]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-531.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-531.]

[18]Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions of formation and accumulation for shale gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[10] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[11] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[12] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[13] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[14] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[15] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵金洲,周莲莲,马建军,李勇明. 考虑解吸扩散的页岩气藏气水两相压裂数值模拟[J]. 天然气地球科学, 2015, 26(9): 1640 -1645 .
[2] 韩长城,林承焰,任丽华,鲁新便,魏婷,张宪国. 塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J]. 天然气地球科学, 2016, 27(5): 790 -798 .
[3] 时建超,屈雪峰,雷启鸿,傅波,何右安,赵国玺,成良丙. 致密油储层可动流体分布特征及主控因素分析——以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827 -834 .
[4] 蒋裕强,谷一凡,徐昌海,张洁伟,程晓艳,陈辉. 开江—梁平海槽东侧飞仙关组岩相分区及地质意义[J]. 天然气地球科学, 2018, 29(8): 1067 -1077 .
[5] 唐大海, 王小娟, 陈双玲, 吴长江, 杨广广, 温梦晗, 朱华. 四川盆地中台山地区须家河组致密砂岩气藏富集高产主控因素[J]. 天然气地球科学, 2018, 29(11): 1575 -1584 .