天然气地球科学 ›› 2009, Vol. 20 ›› Issue (6): 951–956.doi: 10.11764/j.issn.1672-1926.2009.06.951

• 天然气地球化学 • 上一篇    下一篇

一种新的TOC含量拟合方法研究与应用

郭龙,陈践发,苗忠英   

  1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
  • 收稿日期:2009-03-19 修回日期:2009-06-09 出版日期:2009-12-10 发布日期:2009-12-10
  • 通讯作者: 郭龙158977916@qq.com. E-mail:158977916@qq.com.

Study and Application of a New Overlay Method of the TOC Content

GUO Long,CHEN Jian-fa,MIAO Zhong-ying   

  1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
  • Received:2009-03-19 Revised:2009-06-09 Online:2009-12-10 Published:2009-12-10

摘要:

由于取样的限制,通常在烃源岩评价中往往只能获得十分有限的实测烃源岩的TOC含量数据。但随着我国多数盆地精细勘探的深入,需要更加精细的烃源岩评价,因此,人们对测井数据拟合烃源岩的TOC含量变化越来越重视。目前该技术最先进的是人工神经网络拟合方法,但多种神经网络在拟合高成熟度碳酸盐岩烃源岩地层的TOC含量时相关性均不够高。针对研究区内烃源岩的特点,尝试了一种用图版分类—模糊排队—BP神经网络联合拟合TOC含量的新方法。利用该方法对鄂尔多斯盆地马家沟组的测井资料和实测总有机碳资料进行数据处理,将结果与ΔlogR方法、模糊神经网络方法的结果相比较,证实该方法的结果与实测值有更好的相关性,为系统了解鄂尔多斯盆地下古生界烃源岩发育提供了一定的科学依据。

关键词: 测井响应模型, BP神经网络, 模糊排队, TOC含量, 鄂尔多斯盆地

Abstract:

Because of the sampling limitation in the assessment of source rock, we could obtain very limited TOC content data from actually measuring the source rock. With the fine exploration for most basins in China, the finer assessment of source rock is needed. Much attention is paid to the logging data overlaying the TOC content's variation of the source rock. The most advanced overlay method of this technique is artificial neural network. But several neural networks do not make adequate high correlativity when they overlay the TOC content of the carbonate source rock with high degree of maturity. In view of the characteristics of the source rock in the region of interest, this paper attempts a new method to overlay the TOC content, which assembles the crossplot\|sorting, fuzzy-ranking and BP neural network. Using this way to process the logging data and the data of actually measured total organic carbon in Majiagou Formation of Ordos basin, and comparing the results with the results of the ΔlogR method and the fuzzy neural network, we demonstrated that the results of this method have more correlativity with the measured value, and it is helpful for systematically knowing the developing conditions about the Low Palaeozoic source rock in Ordos basin.

Key words: Logging response model, BP neural network, Fuzzy, ranking, TOC content, Ordos basin.

中图分类号: 

  • TE122.1

[1]Beers R F.Radioactivity and organic content of some paleozoic shales[J].AAPG Bulletin,1945,29:1-22.
[2]Swanson V E.Oil Yield and Uranium Content of Black Shales[R].USGS Professional Paper 356-A,1960:1-44.
[3]Tixier M P,Curtis M R.Oil Shale Yield Predicted from Well Logs,In:Drilling and Production[C].7th World Petroleum Congregation,Mexico City,1967,Elsevier.
[4]Schmoker J W.Determination of organic content of appalachian devonian shales from formation-density logs[J].AAPG Bulletin,1979,63:1504-1537.
[5]Schmoker J W.Determination of organic-matter content of appalachian devonian shale from gamma-ray logs[J].AAPG Bulletin,1981,65:1285-1298.
[6]Schmoker J W,Hester  T C.Organic carbon in bakken formation,united states portion of eilliston basin[J].AAPG Bulletin,1983,67:2165-2174.
[7]Herron S L.A total organic carbon log for source rock evaluation[J].The Log Analyst,1987,28(6):520-527.
[8]Herron S L,Le Tendre L.Wireline source-rock evaluation in the paris basin[M]//Huc A Y.Deposition of Organic Facies.AAPG Studies in Geology,1990,30:57-71.
[9]Dellenbach J ,Espitalie J,Lebreton F.Source Rock Logging Trans[R].8th European SPWLA Symp.,1983,Paper D.
[10]Meyer B L,Nederlof M H.Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity cross-plots[J].AAPG Bulletin,1984,68:121-129.
[11]Mendelson J,Toksoz M N.Source Rock Characterization Using Multivariate Analysis of Log Data,In:Trans [R].SPWLA Ann.Logging Symp.,1985,26:UU1-UU21.
[12]Davis J C.Statistic and Data Analysis in Geology,2nd Edition[M].New York:John Wiley,1986:646.
[13]Passey Q R,Creaney S,Kulla J B,et al.A practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin,1990,74(12):1777-1794.
[14]Huang Zehui,Williamson M A.Artificial neural network modeling as an aid to source rock characterization[J].Marine and Petroleum Geology,1996,13(2):277-290.
[15]Rumelhart D E,McLelland J L.Parallel Distributed Processing:Exploration in the Microstructure of Cognition[M].Cambridge,MA:MIT Press,1986:3-44.
[16]王贵文,朱振宇,朱广宇.烃源岩测井识别与评价方法研究[J].石油勘探与开发,2002,29(4):50-52.
[17]Mohammad Reza Kamalia,Ahad Allah Mirshady.Total organic carbon content determined from well logs using ΔlogR and Neuro Fuzzy techniques[J].Journal of Petroleum Science and Engineering,2004,45:141-148.
[18]张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准[J].石油勘探与开发,2002,29(2):8-12.
[19]Fan R E,Chang K W,Hsieh C J,et al.LIBLINEAR:A library for large linear classification[J].Journal of Machine Learning Research,2008,9:1871-1874.
[20]Lim J S.Reservoir properties determination using fuzzy logic and neural networks[J].Journal of Petroleum Science and Engineering,2005,49:182-192.
[21]连承波,李汉林,渠芳,等.基于测井资料的B神经网络模型在孔隙度定量预测中的应用[J].天然气地球科学,2006,17(3):382-384.
[22]朱创业,张寿庭.鄂尔多斯盆地马家沟组碳酸盐岩有机质特征及烃源岩研究[J].成都理工学院学报,1999,26(3):217-220.
[23]王飞宇,何萍,程顶胜,等.下古生界高—过成熟烃源岩有机成熟度评价[J].天然气地球科学,1994, 5(6):1-14.
[24]李贤庆,侯读杰,胡国艺,等.鄂尔多斯盆地中部地区下古生界碳酸盐岩生烃潜力探讨[J].矿物岩石地球化学通报,2002,21(3):153-157.

[1] 刘琴琴,陈桂华,陈晓智,祝彦贺,杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094-1101.
[2] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[3] 杨智峰,曾溅辉,韩菲. 鄂尔多斯盆地西南部延长组7段致密油充注影响因素分析[J]. 天然气地球科学, 2018, 29(7): 961-972.
[4] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[5] 杨超,贺永红,马芳侠,雷裕红,陈义国. 鄂尔多斯盆地南部三叠系延长组有机流体活动期次划分[J]. 天然气地球科学, 2018, 29(5): 655-664.
[6] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[7] 屈雪峰,周晓峰,刘丽丽,丁黎. 鄂尔多斯盆地古峰庄—麻黄山地区长82低渗透砂岩致密化过程分析[J]. 天然气地球科学, 2018, 29(3): 337-348.
[8] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[9] 陈跃,马东民,吴圣,李新虎,方世跃,郭晨. 鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J]. 天然气地球科学, 2018, 29(2): 189-198.
[10] 姚泾利, 胡新友, 范立勇, 刘新社, 季海锟, . 鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1465-1474.
[11] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[12] 王晖,张磊,石军太,张丽霞,高潮,张亮,郭超. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078-1084.
[13] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[14] 李威,文志刚,窦立荣,谢勰,王泽,李馨. 鄂尔多斯盆地西南地区油气富集与储层演化史[J]. 天然气地球科学, 2017, 28(6): 920-929.
[15] 魏新善,陈娟萍,张道锋,闫小雄,任军锋,严婷. 鄂尔多斯盆地东部大面积致密碳酸盐岩气地质特征及成藏条件分析[J]. 天然气地球科学, 2017, 28(5): 677-686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!