Element geochemical characteristics of shale in the First Member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and Well M115 in Linxian County, Shanxi as examples
CUI Chenguang,1, ZHANG Hui2, LIU Wenxiang2, LI Shifang3, LIU Yan2, SONG Huanxin,1, WU Chenjun1, WEN Zhigang1
1.Key Laboratory of Oil and Gas Resources and Exploration Technology of Ministry of Education,College of Resources and Environment,Yangtze University,Wuhan 430100,China
2.China Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi 'an 710018,China
3.No. 10 Oil Production Plant,PetroChina Changqing Oilfield Company,Qingyang 745100,China
The Carboniferous Benxi Formation shale is an important target interval for shale gas exploration in the Upper Paleozoic in the central and eastern Ordos Basin. On the basis of its representative field profile, drilling core system observation and sampling analysis, using the analyticaldata of major and trace elements, combined with the test data of the whole rock mineral composition, organic carbon content, organic microscopic composition, and so on, the palaeoclimate, water environment and the relationship with the development of organic-rich mud shale during the sedimentary period of the First Member of Benxi Formation in the eastern Ordos Basin are studied. The results show that the shale in the First Member of Benxi Formation of the study area is mainly clayey shale and siliceous shale, and quartz and clay minerals are absolutely dominant in the mineral composition; the CIA, Sr/Cu, and C value parameters indicate that the sedimentary period of the first member is mainly hot characteristics of wet paleoclimate; Sr content, Sr/Ba, Ba/Ga and other parameters indicate that the salinity of the sedimentary water in the upper and lower sub-members of the member is saline water, saline water-brass water, respectively,indicating that the water body salt in the late depositional period of this member was at relatively high degree;V/(V+Ni),Ceanom,Th/U and other parameters indicate that the water body in this sedimentary period was dominated by anoxic-poor oxygen environment. The hot and humid paleo-climate, the saline anoxic-poor sedimentary water environment and other good organic matter preservation conditions are favorable factors for the development of organic-rich shale in this section, especially the upper subsection. The development of high-quality shale provides a good foundation for shale gas exploration in the study area.
CUI Chenguang, ZHANG Hui, LIU Wenxiang, LI Shifang, LIU Yan, SONG Huanxin, WU Chenjun, WEN Zhigang. Element geochemical characteristics of shale in the First Member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and Well M115 in Linxian County, Shanxi as examples. Natural Gas Geoscience[J], 2022, 33(6): 1001-1012 doi:10.11764/j.issn.1672-1926.2021.12.009
Table 1 Test results of element content analysis in the First Member of Benxi Formation
编号
层位
SiO2/%
Al2O3/%
微量元素/10-6
Sr/Ba
Ba/Ga
V/ (V+Ni)
Ceanom
Th/U
CIA
Sr/Cu
C值
P/Ti
TOC/%
Sr
V
Ni
Ba
Cu
Mo
Ga
Th
Z-S12
招贤剖面C2b1上
57.39
24.23
217.26
95.93
12.88
169.32
13.41
0.47
31.04
20.57
1.28
5.45
0.88
-0.03
4.94
91.30
16.20
0.73
0.11
2.93
Z-S11
59.46
24.01
222.63
96.24
9.14
190.31
8.33
0.45
31.48
20.38
1.17
6.05
0.91
-0.05
4.86
91.06
26.73
0.31
0.09
2.29
Z-S10
56.27
21.29
193.25
91.81
52.91
148.53
19.83
0.62
26.88
15.74
1.30
5.53
0.63
-0.02
3.82
91.74
9.75
2.54
0.16
2.25
Z-S9
48.10
17.11
298.55
81.22
26.90
202.87
12.72
0.94
24.34
17.16
1.47
8.34
0.75
-0.04
4.54
90.00
23.47
1.12
0.16
1.62
Z-S8
58.05
22.77
270.02
94.04
22.58
167.83
22.61
0.50
31.10
20.40
1.61
5.40
0.81
-0.06
4.98
91.42
11.94
0.79
0.13
2.98
Z-S7
59.02
24.14
222.90
96.23
52.34
187.36
23.38
0.49
29.41
18.60
1.19
6.37
0.65
-0.04
3.38
91.38
9.53
0.36
0.17
2.03
Z-S6
55.56
21.66
339.26
68.78
11.14
3648.07
14.87
0.57
33.65
17.44
0.09
108.42
0.86
-0.07
3.21
90.17
22.82
0.35
0.14
12
Z-S5
招贤剖面C2b1下
57.98
20.47
149.25
134.39
57.61
289.23
28.04
0.43
27.77
17.82
0.52
10.42
0.70
-0.05
4.54
83.52
5.32
1.38
0.10
1.97
Z-S4
61.55
22.31
184.10
167.13
10.49
336.66
12.91
0.72
32.76
22.25
0.55
10.28
0.94
-0.02
3.44
82.63
14.26
0.24
0.08
1.74
Z-S3
58.54
23.75
201.47
175.50
26.01
357.14
23.02
0.23
34.39
21.80
0.56
10.38
0.87
-0.02
4.40
83.80
8.75
0.41
0.08
1.66
Z-S2
64.61
21.00
180.29
89.51
14.48
132.49
20.09
0.32
28.28
14.48
1.36
4.68
0.87
-0.04
4.57
92.17
8.97
1.28
0.14
1.26
Z-S1
47.05
35.77
34.14
99.32
34.39
45.50
4.28
1.31
36.74
6.22
0.75
1.24
0.74
-0.03
1.15
99.01
7.80
2.60
0.02
1.09
M-S9
M115井C2b1上
50.48
32.69
270.82
93.75
11.29
108.47
14.17
0.39
43.36
20.75
2.50
2.50
0.89
-0.02
4.97
97.06
19.12
1.08
0.07
1.01
M-S8
47.75
17.98
403.32
168.82
26.85
250.11
17.99
2.90
26.86
14.46
1.61
9.31
0.86
-0.03
1.98
86.97
22.42
2.04
1.56
1.44
M-S7
60.23
24.45
88.54
199.45
22.68
281.2
25.48
0.42
33.89
17.94
0.31
8.30
0.90
-0.04
3.44
88.68
3.47
0.22
0.08
1.42
M-S6
46.03
28.06
354.52
207.49
86.45
188.57
81.31
1.02
36.84
21.35
1.88
5.12
0.71
-0.01
2.26
93.74
4.36
1.61
0.15
5.33
M-S5
M115井C2b1下
58.40
20.39
203.99
133.65
22.37
318.89
26.61
0.35
28.37
17.54
0.64
11.24
0.86
-0.05
4.49
85.60
7.67
1.15
0.12
2.57
M-S4
64.22
20.06
75.27
202.86
28.4
351.14
22.16
0.19
33.04
20.28
0.21
10.63
0.88
-0.03
3.56
83.65
3.40
0.15
0.09
0.83
M-S3
53.53
29.62
339.09
144.74
55.25
190.24
33.65
0.48
34.08
34.66
1.78
5.58
0.72
0.00
3.46
93.19
10.08
0.58
0.12
0.81
M-S2
47.63
34.55
138.09
94.62
21.56
91.15
5.67
1.48
48.48
8.73
1.51
1.88
0.81
-0.18
0.69
97.49
24.35
1.15
0.03
0.46
M-S1
49.93
34.11
221.73
108.88
39.27
180.15
4.7
0.32
41.72
20.07
1.23
4.32
0.73
-0.04
3.49
94.85
47.18
0.13
0.03
0.67
注:化学蚀变指数表达式:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔数,CaO*表示为硅酸盐矿物中的CaO含量。当CaO的摩尔数小于Na2O的摩尔数时,CaO*可取CaO的摩尔数;当CaO的摩尔数大于Na2O的摩尔数时,CaO*可取Na2O的摩尔数。C值公式:C=∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na)[22⁃24]
NIE H K, TANG X, BIAN R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica,2009,30(4):484-491.
DAI J X, DONG D Z, NI Y Y, et al. Some essential geological and geochemical issues about shale gas research in China[J].Natural Gas Geoscience,2020,31(6):745-760.
GUO T L, LIU R B. Inspiration from the breakthrough of marine shale gas exploration in complex structural area with high evolution degree: A case study of Well JY1 in the eastern margin of Sichuan Basin[J].Natural Gas Geoscience,2013,24(4): 643-651.
ZHANG J Z, LI X Q, WANG Y, et al. Accumulation conditions and reservoir characteristics of marine terrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin[J]. Journal of China Coal Society,2015,40(8):1871-1878.
ZHOU J S, WANG N X, ZHAO Q P, et al. Analysis on controlling factors and sandstone reservoir characteristics of the Upper Paleozoic in Ordos Basin[J]. Journal of Oil and Gas Te-chnology, 2014,36(2):27-33,5.
FENG J P,OUYANG Z J, CHEN Q H, et al. Sedimentary characteristics of the Upper Carboniferous in Ordos Basin and it’s adjacent areas[J]. Journal of Paleontology, 2021, 23(1): 53-64.
LIN J, LI Y, HE J. An analysis of the source and the sedimentary system of the Carboniferous Benxi Formation in Yanchang area of Ordos Basin[J]. Geology in China,2013,40(5):1542-1551.
LIU G Z, GAO W, WEI J S, et al. Sedimentary sequence characteristics of mixed stratigraphy: A case study of Benxi Formation in Gaoqiao area, Ordos Basin[J]. Natural Gas Geoscience, 201,32(3):382-392.
YU X H, WANG X Z, WANG N X, et al. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sandbody in the Upper Paleozoic in Southeastern Ordos Basin[J].Journal of Palaeogeography,2017,19(6):935-954.
YAN D Y, HUANG W H, LI A, et al. Preliminary analysis of marine-continental transitional shale gas accumulation conditions and favorable areas in the Upper Paleozoic Ordos Basin[J]. Journal of Northeast Petroleum University, 2013, 37(5): 1-9,62,127.
LIU X X. Study on the Sedimentary Environment of the Upper Carboniferous Benxi Formation of Eastern Ordos Basin,China[D]. Chengdu:Chengdu University of Technology,2019.
CHEN Q H, LI K Y, ZHANG D F, et al. The relationship between fan delta and hydrocarbon accumulation in Benxi-Taiyuan Formation, Ordos Basin[J]. Geology in China,2010,37(2):421-429.
ZHAO J Z, WANG L, SUN B H, et al. Geochemical characteristics and geochemical characteristics of the Upper Paleozoic Gas Field in Ordos Basin[J]. Natural Gas Geoscience, 2010,21(6):875-881.
LI Z, JIANG Z X, TANG X L, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the Lower Silurian Longmaxi,Southeastern Chongqing[J].Earth Sci-ence, 2017,42(7):1116-1123.
BI H, JIANG Z X, LI P, et al. Shale reservoir characteristics and its influence on gas content of Wufeng-Longmaxi Formation in the Southeastern Chongqing[J].Natural Gas Geoscien-ce, 2014,25(8):1275-1283.
WU C J, ZHANG M F, MA W Y, et al. Organic matter characteristics and sedimentary environment of the Lower Cambrian Niutitang shale in Southeastern Chonqing[J]. Natural Gas Geoscience, 2014,25(8): 1277-1274.
WANG S J, HUANG X Z, TUO J C, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica,1997,12(1):66-71.
LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment-Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007,29(3):307-310,314.
YANG J H, LUO C G, DU S J, et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J].Acta Mineralogica Sinica,2020,40(6):723-733.
WANG X Y, JIANG Z X. Geochemical characteristics of trace and rare earth elements in the 3rd member of paleocene Funing Formation in Dongtai Depression,north Jiangsu Basin,and their geological significance[J].Geological Review,2021,67(2):355-366.
DING J H, ZHANG J C, SHI G, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica, 2021,39(2):324-340.
MIAO Y, SANG S X, LIN H X, et al. Trace elements signatures of the Carboniferous-Permian deposits in the Bohai Gulf Basin and their facies significance[J].Sedimentary Geology and Tethyan Geology,2007,29(4):27-32.
JONES B J,MANNING A C. Comparison of ceochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111:111-129.
ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J].Palaeogeography, Palaeoclimatology Palaeoecology,2011,308(1-2):65-83.
TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology,2012:46-58.
LI M C, DING H, JIAO K, et al. Organic petrology of Niutitang Formation, in Sancha, Western Hunan Province,China[J]. Natural Gas Geoscience,2012,23(6):1077-1089.
... 注:化学蚀变指数表达式:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔数,CaO*表示为硅酸盐矿物中的CaO含量.当CaO的摩尔数小于Na2O的摩尔数时,CaO*可取CaO的摩尔数;当CaO的摩尔数大于Na2O的摩尔数时,CaO*可取Na2O的摩尔数.C值公式:C=∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na)[22⁃24] ...
... 注:化学蚀变指数表达式:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔数,CaO*表示为硅酸盐矿物中的CaO含量.当CaO的摩尔数小于Na2O的摩尔数时,CaO*可取CaO的摩尔数;当CaO的摩尔数大于Na2O的摩尔数时,CaO*可取Na2O的摩尔数.C值公式:C=∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na)[22⁃24] ...
... 注:化学蚀变指数表达式:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔数,CaO*表示为硅酸盐矿物中的CaO含量.当CaO的摩尔数小于Na2O的摩尔数时,CaO*可取CaO的摩尔数;当CaO的摩尔数大于Na2O的摩尔数时,CaO*可取Na2O的摩尔数.C值公式:C=∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na)[22⁃24] ...
... 注:化学蚀变指数表达式:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔数,CaO*表示为硅酸盐矿物中的CaO含量.当CaO的摩尔数小于Na2O的摩尔数时,CaO*可取CaO的摩尔数;当CaO的摩尔数大于Na2O的摩尔数时,CaO*可取Na2O的摩尔数.C值公式:C=∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na)[22⁃24] ...