High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd Member of Shanxi Formation, eastern margin of Ordos Basin
LIANG Yueli,1, GE Jiawang,1,2, ZHAO Xiaoming1,2, ZHANG Xi1,2, LI Shuxin3, NIE Zhihong3
1.School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
2.Southwest Petroleum University,Natural Gas Geology Key Laboratory of Sichuan Province,Chengdu 610500,China
3.PetroChina Coalbed Methane Company Limited,Beijing 100028,China
The shale of marine-continental translational facies is characterized by thin bedded layers, various lithology and multiple interstratifications. Aiming at the high-resolution sequences correlations of these shales, we establish a stratigraphic delineation method combining high-resolution stratigraphic sequence and cyclic stratigraphy. Using the data from logging curve-assisted rock cores and field section, the INPEFA curve obtained from the processing of logging curve and the time-frequency features extracted by wavelet transform, the high-resolution stratigraphic interface identification and multi-well isochronous comparison of the transitional shale in the 2nd Member of the Shanxi Formation were obtained. Compared with the conventional natural GR, the medium and short-term cycles points of the GR-INPEFA curve can significantly improve the identification accuracy of sequences interfaces. Wavelet coefficient curves and time-frequency mapping analysis with different scale factors can achieve the identification and comparison of medium-term and short-term cycle interfaces. Integrated INPEFA and wavelet transform technology, the 2nd Member of the Shanxi Formation is divided into three mid-term cycles (from bottom to top: MSC1, MSC2 and MSC3) and 12 short-term cycles (from bottom to top: SSC1-SSC12). The three medium-term cycles correspond to Sha21, Shan22 and Shan23 sub-members respectively. The short-term cycle are well coupled with the evolution of higher-order sequences and strata development. Finally, the coupling relationship of high-resolution sequence, mineral composition associated with reservoir characteristics is analyzed. It showed that SSC1 in lowest part of MSC1 is prone of excellent shale reservoirs. The medium-term and short-term cycles held significant implications for further stratigraphic correlations and exploration activities. The technic integration of multi-scale based logging cycles shows advantages for stratigraphic framework construction in a lithologically-complex shale interval.
LIANG Yueli, GE Jiawang, ZHAO Xiaoming, ZHANG Xi, LI Shuxin, NIE Zhihong. High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd Member of Shanxi Formation, eastern margin of Ordos Basin. Natural Gas Geoscience[J], 2022, 33(3): 408-417 doi:10.11764/j.issn.1672-1926.2021.10.021
前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架。相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度。
Fig.6
The comprehensive map of sequence stratigraphic division of the Shan2 Member of the Shanxi Formation in Well A1 in the eastern margin of Ordos Basin
GUO X S,HU D F,LIU R B, et al. Geological conditions and exploration potential of Permian transitional shale gas in the Sichuan Basin[J].Natural Gas Industry,2018,38(10):17-24.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J].Petroleum Exploration and Development,2020,47(3):435-446.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J].Natural Gas Industry,2016,36(1):19-32.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J].Acta Sedimentologica Sinica,2021,39(1):29-45.
JIANG Z X. Advances in sequence stratigraphy: A summary from international workshop on sequence stratigraphy[J].Earth Science Frontiers,2012,19(1):1-9.
JIANG Z X, LIANG C, WU J, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J].Acta Petrolei Sinica,2013,34(6):1031-1039.
CREANEY S, PASSEY Q R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J].AAPG Bulletin,1993,77:386-401.
SMITH M G, BUSTIN R M. Late Devonian and Early Mississippian Bakken and Exshaw black shale source rocks, western Canada sedimentary basin: A sequence stratigraphic interpretation[J].AAPG Bulletin,2000, 84(7):940-960.
ZHANG X, ZHANG T S, ZHAO X M, et al. Astronomical and volcanic organic-carbon during Later Ordovician-Early Silurian in the upper Yangtze area, South China[J].Petroleum Exploration and Development,2021,48(4):732-744.
DU X B, LIU H, LIU H M, et al. Methods of sequence stratigraphy in the fine-grained sediments: A case from the upper fourth sub-member and the lower third sub-member of the Shahejie Formation in Well Fanye 1 of Dongying Depression[J].Geological Science and Technology Information,2016,35(4):1-11.
LIU P B. Study of Sedimentary Phases and Seismic Reservoir Identification in the Shanxi Formation in the Yanchang Exploration Area of Ordos Basin[D].Xi’an: Northwestern University,2010.
PENG H Y, LIU J D, CHEN H D, et al. High-resolution sequence stratigraphy and gas accumulation of Shanxi Formation in east Ordos Basin[J].Geophysical Prospecting for Petroleum,2008,47(5):519-525.
LU S X, ZHANG H Z, MENG E, et al. Application of INPEFA technique to carry out sequence-stratigraphy study[J].Oil Geophysical Prospecting,2007,42(6):703-708.
YUAN Y, WANG L, XIE R J. Application of INPEFA technology to sequence stratigraphic of the third member of Funing Formation,Nanhua Block,Qintong Sag,north Jiangsu Basin[J].Petroleum Geology and Experiment,2018,40(6):871-876.
GAO Y F. Characteristics and Controlling Factors Differences of Sandstone Reservoir of Shan 2 in the East and West of the Daning-Jixian Block[D].Beijing: China University of Geosciences(Beijing),2020.
ZHAO L M, WEN G H, LI X T, et al. Evaluation of the “sweet spot” of dense sandstone gas reservoir in sub-member 2-3 of Shanxi Formation in Daning-Jixian Block, Ordos Basin[J].Natural Gas Industry,2018,38(S1):5-10.
LI Y, TANG D Z, XU H, et al. Geological and hydrological controls on water co-produced with coalbed methane in Liulin, eastern Ordos Basin, China[J].AAPG Bulletin,2015,99(2):207-229.
DU W, JIANG Z X, ZHANG Y, et al. Sequence stratigraphy and sedimentary facies in the lower member of the Permian Shanxi Formation, northeastern Ordos Basin, China[J].Journal of Earth Science,2013,24:75-88.
CROSS T A. Controls on Coal Distribution in Transgressive-Regressive Cycles, Upper Cretaceous, Western Interior, U.S.A[M]. Tulsa: SEPM Special Publiction,1988:371-380.
YU X H, WANG X Z, WANG N X, et al. The stratigraphic framework of the Upper Paleozoic sequence and the sedimentary evolution of gas-bearing sands in the southeastern Ordos Basin[J].Journal of Paleogeography,2017,19(6):935-954.
LIAO Z W. The Research on Sedimentary Facies and Reservoir Characteristic of Shanxi Formation-Lower Shihezi Formation, Fuxian Area, Ordos Basin[D].Chengdu: Chengdu University of Tecnology,2012.
DONG L. Study of Sedimentary Characteristics of Main Sand Bodys in Taiyuan Formation to Eight Member of Shahezi Formation in Daning-Jixian Area[D].Qingdao: Shandong University of Science and Technology,2018.
CHEN H D, LI J, ZHANG C G, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J].Acta Petrologica Sinica,2011,27(8):2213-2229.
LIU C. Sequence stratigraphic framework and sedimentary model of Upper Paleozoic in Linxing area, Ordos Basin[J].Unconventional Oil & Gas,2019,6(1):23-33.
YANG Y, LEI B J, FENG Y J, et al. High-resolution sequence stratigraphic and coal sedimentary modes of member 2 of Shanxi Formation in Zizhou and its adjacent areas[J].Oil & Gas Geology,2013,34(1):58-67.
NIO S D, BROUWER J, SMITH D, et al. Spectral trend attribute analysis: Applications in the stratigraphic analysis of wireline logs[J].First Break,2005,23(4):71-75.
LIU L F, XU J L, GAO P, et al. Application of comprehensive prediction error filter analysis to stratigraphic division and isochronous correlation[J].Oil & Gas Geology,2013,34(4):564-572.
WANG M Q, XIE J, WANG J K, et al. Research of high-resolution sequence stratigraphic using INPEFA: A case study in the second member of Dongying Formation of Chengbei Oilfield[J].China Sciencepaper, 2016,11(9):982-987,994.
ZHENG R C, PENG J, WU C R. Grade division of base-level cycles of terrigenous basin and its implications[J].Acta Sedimentologica Sinica,2001,19(2):249-255.
DENG H W. A new school of thought in sequence stratigraphic studies in U.S.A.: High-resolution sequence stratigraphic[J].Oil & Gas Geology,1995,16(2):89-97.
LI J Q. Application of INPEFA Technology in Recognition of Source Sequence and Quality Reservoirs in Western Sichuan[D].Wuhan: Yangtze University,2019.
CHEN G H, YU J, ZHANG X Z. Logging sequence stratigraphic division based on wavelet time-frequency analysis[J].Xinjiang Petroleum Geology,2007,28(3):355-358.
ZHOU J. Application of Wavelet Transform in the Studies of Sequence Stratigraphic of K1y4 of Xingcheng Area[D].Daqing: Northeast Petroleum University,2014.
REN J F, LIAO Y T, SUN M, et al. A method for quantitative division of sequence stratigraphic with high-resolution based on wavelet transform and its application[J].Progress in Geophysics,2013,28(5):2651-2658.
ZHOU Y W, DU Y H, XIE J, et al. Application and comparison of INPEFA technique and wavelet transform in sequence stratigraphic division: A case study in the third member of Dongying Formation in Dawangzhuang area, Raoyang Sag[J].China Sciencepaper,2021,16(5):494-501.
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
0
1
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
1
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
1
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
1
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
1
... 前人[7-9]针对页岩段层序地层格架已开展过一些研究,认为TOC、V、Cr等有机与无机地球化学指标与相对海平面变化有关,地球化学指标及矿物成分特征等也可作为层序识别的依据,但该类方法划分指标相对单一并且往往受制于样品精度;SINGH[10]依据自然伽马曲线(GR)划分了Barnett组海相页岩伽马准层序GRP(Gamma Ray Parasequence),国内学者[11]亦利用此方法构建了东营凹陷陆相页岩层序格架.相对于海相页岩和陆相页岩,海陆过渡相页岩具有沉积环境及岩相高频变化、岩性复杂且频繁互层等特点,加剧了海陆过渡相页岩高精度层序界面识别难度. ...
... 鄂尔多斯盆地东缘构造特征及井位分布图(据文献[17],有修改)The structural characteristics and well location distribution in the eastern margin of Ordos Basin (modified after Ref.[17])Fig.1
... 鄂尔多斯盆地东缘构造特征及井位分布图(据文献[17],有修改)The structural characteristics and well location distribution in the eastern margin of Ordos Basin (modified after Ref.[17])Fig.1