天然气地球科学, 2022, 33(2): 297-302 doi: 10.11764/j.issn.1672-1926.2021.08.019

气藏储层非均质性表征方法及开采物理模拟实验

胡勇,1, 贾玉泽1,2, 何东博1, 王继平3, 李忠诚4, 周梦飞,1,2, 魏克颖3, 江良冀1, 徐轩1, 焦春艳1, 郭长敏1

1.中国石油勘探开发研究院,北京 100083

2.中国科学院大学,北京 100190

3.中国石油长庆油田分公司,陕西 西安 710018

4.中国石油吉林油田分公司勘探开发研究院,吉林 松原 138000

Characterization method of gas reservoir heterogeneity and physical simulation experiment of production

HU Yong,1, JIA Yuze1,2, HE Dongbo1, WANG Jiping3, LI Zhongcheng4, ZHOU Mengfei,1,2, WEI Keying3, JIANG Liangji1, XU Xuan1, JIAO Chunyan1, GUO Changmin1

1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China

2.University of Chinese Academy of Sciences,Beijing 100190,China

3.Changqing Oilfield Company,PetroChina,Xi’an 710018,China

4.Research Institute of Petroleum Exploration and Development,Jilin Oilfield Company,PetroChina,Songyuan 138000,China

通讯作者: 周梦飞(1997-),男,湖北松滋人,博士研究生,主要从事天然气开发实验与渗流机理研究.E-mail:zhoumengfei19@mails.ucas.ac.cn.

收稿日期: 2020-12-25   修回日期: 2021-08-26  

基金资助: 国家自然科学基金“致密砂岩微纳米孔喉系统对储层含气性及气水运移的控制机理”.  51704326

Received: 2020-12-25   Revised: 2021-08-26  

作者简介 About authors

胡勇(1978-),男,重庆人,高级工程师,博士,主要从事天然气开发实验与基础理论应用研究.E-mail:huy69@petrochina.com.cn. , E-mail:huy69@petrochina.com.cn

摘要

以国内砂岩气藏储层岩石为研究对象,结合高压压汞与露头踏勘及气田资料数据分析,利用孔喉半径、岩心渗透率、试井渗透率、测井渗透率等指标,建立了砂岩气藏岩石微观及储层宏观非均质表征方法,研究了岩心微观孔喉、露头剖面、区块、气田4个层级的非均质性特征。结果表明:砂岩气藏储层岩石微观孔喉结构极其复杂,渗流通道由数量众多、大小各异的各类孔隙、裂缝和喉道组成,形成一种复杂的渗流网络,无论微观上还是宏观上均表现出较强非均质性。结合储层非均质性建立全直径长岩心非均质物理模拟实验模型和方法,对比研究了高渗区布井和致密区布井2种方式的开采效果,在配产均为800 mL/min条件下,井位部署在高渗区比致密区布井的稳产期长60%,稳产期结束后产量递减快,低产周期短;高渗区布井比致密区布井的地层压力下降快,表明储量可以得到更快速动用;高渗区布井比致密区布井的采出程度上升更快,稳产期末采出程度高51.2%,采收率高14.6%。研究成果对类似气藏科学开发以及采收率提高具有指导意义。

关键词: 砂岩气藏 ; 储层非均质性 ; 表征方法 ; 物理模拟 ; 提高采收率

Abstract

Taking the reservoir rocks of sandstone gas reservoirs in China as the research object, combined with high pressure mercury injection and outcrop reconnaissance and gas field data analysis, taking pore throat radius, core permeability, well test permeability and logging permeability as indexes, this paper established the microscopic and macroscopic heterogeneity characterization methods of sandstone gas reservoir, and studied the heterogeneity characteristics of core micro pore throat, outcrop profile, block and gas field. The results show that the microscopic pore throat structure of sandstone gas reservoir is extremely complex, and the flow channel is composed of a large number of pores, fractures and throats of different sizes, forming a complex flow network which shows strong heterogeneity both microscopically and macroscopically. Combined with reservoir heterogeneity, the physical simulation model and method of heterogeneous full-diameter long core are established, and the production effects of well distribution in high permeability area and dense area are compared and studied. Under the condition of 800 mL/min rationing production, the stable production period of well distribution in high permeability area is 60% longer than that in tight area, and the production decreases rapidly after the end of stable production period, and the low production period is short; the formation pressure of well distribution in high permeability area decreases faster than that in tight area, indicating that reserves can be used more quickly; the recovery percent in high permeability area rises faster than that in tight area, and the recovery percent at the end of stable production period is 51.2% higher while the recovery is 14.6% higher. The research results are of guiding significance for the scientific development and enhanced gas recovery of similar gas reservoirs.

Keywords: Sandstone gas reservoir ; Reservoir heterogeneity ; Characterization method ; Physical simulation ; Enhanced gas reservoir recovery

PDF (2640KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡勇, 贾玉泽, 何东博, 王继平, 李忠诚, 周梦飞, 魏克颖, 江良冀, 徐轩, 焦春艳, 郭长敏. 气藏储层非均质性表征方法及开采物理模拟实验. 天然气地球科学[J], 2022, 33(2): 297-302 doi:10.11764/j.issn.1672-1926.2021.08.019

HU Yong, JIA Yuze, HE Dongbo, WANG Jiping, LI Zhongcheng, ZHOU Mengfei, WEI Keying, JIANG Liangji, XU Xuan, JIAO Chunyan, GUO Changmin. Characterization method of gas reservoir heterogeneity and physical simulation experiment of production. Natural Gas Geoscience[J], 2022, 33(2): 297-302 doi:10.11764/j.issn.1672-1926.2021.08.019

0 引言

气藏储层非均质性普遍存在,国内外开展了大量研究工作并取得了许多成果认识1-12,目前常常通过岩心实验测试获得渗透率,采用渗透率级差进行表征13-15。但仅仅采用该参数难以准确描述储层岩石微观和宏观非均质性,对于强非均质气藏提高开发效果的指导意义不大。

本文采用高压压汞与露头踏勘及气田资料数据分析相结合的方法,以孔喉半径、岩心渗透率、试井渗透率、测井渗透率等为指标16-20,建立了砂岩气藏岩石微观及储层宏观非均质表征方法,研究了岩心微观孔喉、露头剖面、区块、气田4个层级的非均质性特征。在此基础上,建立全直径长岩心非均质物理模拟实验模型和方法,对比研究了高渗区布井和低渗区布井开采效果,取得的成果认识对类似气藏的科学开发以及采收率提高具有指导意义。

1 储层非均质性表征方法

采用高压压汞与露头踏勘及气田资料数据分析相结合的方法,以孔喉半径、岩心渗透率、试井渗透率、测井渗透率等为指标,建立了砂岩气藏岩石微观及储层宏观非均质性表征方法。

对于微观孔喉层级,采用岩心最大孔喉半径与中值孔喉半径比值进行表征;对于露头剖面层级,通过纵、横向连续取心测试岩心渗透率,采用最大和最小渗透率比值进行表征;对于区块层级,通过对气井目的层位开展系统岩心渗透率测试分析,采用中值渗透率比值进行表征;对于气田层级,通过气井试井渗透率和测井渗透率比值进行表征。

2 砂岩气藏储层非均质性特征

2.1 微观孔喉层级

2.1.1 毛管压力曲线特征

采用高压压汞实验技术,对不同渗透率孔隙型储层岩石毛管压力特征进行了测试,结果表明:不同渗透率砂岩毛管压力曲线形态差异显著,岩石微观孔喉结构存在差异(表1图1)。对于渗透率为98.66×10-3 μm2的砂岩,排驱压力为0.01 MPa,最大进汞饱和度为99.4%,表明该类砂岩发育孔喉较大且连通性较好;而对于渗透率为0.005 9×10-3 μm2的砂岩,排驱压力为2.98 MPa,最大进汞饱和度为54.8%,表明该类砂岩发育孔喉较小且连通性较差。

表1   毛管压力特征参数

Table 1  Capillary pressure characteristic parameters

渗透率/(10-3 μm2排驱压力/MPa最大进汞饱和度/%
98.660.0199.4
1.2880.2791.7
0.7340.5479.8
0.0771.0273.3
0.005 92.9854.8

新窗口打开| 下载CSV


图1

图1   不同渗透率岩石毛管压力曲线

Fig.1   Capillary pressure curves of rocks with different permeability


2.1.2 微观孔喉组成及分布特征

依据毛管压力曲线,对不同渗透率砂岩孔喉组成及分布特征进行分析,结果表明:气藏储层岩石微观孔喉结构极其复杂,不同渗透率砂岩孔喉组成及分布存在较大差异(表2图2)。对于渗透率为98.66×10-3 μm2的砂岩,峰值孔喉半径为2.05 μm,占比15.2%;而对于渗透率为0.005 9×10-3 μm2的砂岩,峰值孔喉半径为0.015 μm,占比9.1%。

表2   峰值孔喉半径大小及占比

Table 2  Size and proportion of peak pore throat radius

渗透率/(10-3 μm2峰值孔喉半径/μm峰值孔喉占比/%
98.662.0515.2
1.2881.3318.2
0.7340.4919.4
0.0770.1212.1
0.005 90.0159.1

新窗口打开| 下载CSV


图2

图2   不同渗透率岩石孔喉组成与分布特征

Fig.2   Pore throat composition and distribution characteristics of rocks with different permeability


2.1.3 中值半径

通过对我国典型气田458块岩心高压压汞实验结果进行统计分析,发现不同气田不同渗透率储层岩石的中值半径存在一定差异,总体上榆林气田储层岩石中值孔喉半径最大,其次依次为须家河组气藏、苏里格气田、迪那气田、克深气田及大北气田(图3)。

图3

图3   典型气田砂岩中值半径

Fig.3   Median radius of sandstone in typical gas field


采用最大孔喉半径与中值半径比值表征微观非均质性。通过对典型气田458块岩心高压压汞实验结果进行统计分析,发现孔喉级差以3~12为主,表明砂岩存在较强的微观非均质性,且渗透率越低,微观非均质性越强。进一步对典型气田统计表明:总体上苏里格气田储层岩石微观非均质性最强,其次依次为大北气田、克深气田、榆林气田、须家河组气藏及迪那气田(图4)。

图4

图4   砂岩微观孔喉非均质性

Fig.4   Microscopic pore throat heterogeneity of sandstone


2.2 露头剖面层级

对鄂尔多斯盆地柳林陈家庄露头剖面开展了纵、横向密集连续取心,测试露头岩心常规渗透率,将岩心渗透率归位到露头剖面(图5),采用最大和最小渗透率比值表征露头剖面层级非均质性。纵向上渗透率最小为0.045×10-3 μm2,最大为12.8×10-3 μm2,比值为284;横向上渗透率最小为0.069×10-3 μm2,最大为12.8×10-3 μm2,比值为185;纵、横向渗透率分布均表现出砂体内部的强烈非均质性。

图5

图5   鄂尔多斯盆地柳林陈家庄盒8露头剖面

Fig.5   Outcrop profile of He 8 in Chenjiazhuang, Liulin, Ordos Basin


2.3 区块层级

对于区块层级,通过对鄂尔多斯盆地苏里格气田气井目的层位开展系统岩心渗透率测试分析,采用气井中值渗透率比值进行表征,最大为5.4 (表3)。

表3   气井中值渗透率比值

Table 3  Median permeability ratio of gas well

井号岩心数量/块中值渗透率/(10-3 μm2中值渗透率比值
苏54-20-86300.4855.4
苏东011-104290.4434.9
苏东62-40260.1982.2
苏14-15-52640.1812.0
苏东11-24600.1131.3
苏47-45-69100.091.0

新窗口打开| 下载CSV


2.4 气田层级

对于气田层级,通过气井试井渗透率和测井渗透率之比表征。李熙喆等21-22统计分析了我国10余个大气田数据(图6),结果表明,各个气田差异显著,克深2气田的值最大,为30.35,苏6气田的值最小,为0.115。

图6

图6   气田试井渗透率与测井渗透率比值

Fig.6   Ratio of well test permeability to logging permeability in gas field


3 非均质气藏开发物理模拟实验

3.1 物理模拟实验模型

选用渗透率分别为0.075×10-3 μm2、0.085×10-3 μm2、0.124×10-3 μm2、0.279×10-3 μm2、0.966×10-3 μm2、2.12×10-3 μm2的全直径砂岩干燥岩心进行有序组合,建立一维非均质物理模拟实验模型,模拟气藏横向非均质性(图7)。

图7

图7   一维非均质物理模拟实验模型

Fig.7   One-dimensional heterogeneous physical simulation experimental model


3.2 物理模拟实验方法

在上述物理模拟实验模型上,依照以下步骤开展气藏衰竭开采物理模拟实验:

(1)模型饱和气,模拟地层压力平衡至20 MPa。

(2)同一模型上,分别模拟井位部署在高渗区(2.12×10-3 μm2端采出)和井位部署在致密区(0.075×10-3 μm2端采出)2种方式进行衰竭开采物理模拟实验,实验模拟气井配产为800 mL/min。

(3)研究2种模拟方式下的气井产气量、地层压力下降规律以及采出程度等气藏开发指标特征。

3.3 物理模拟实验结果

通过上述物理模拟实验,研究2种模拟方式下的气井产气量、地层压力下降规律以及采出程度等气藏开发指标特征。在配产均为800 mL/min条件下,井位部署在高渗区与部署在致密区对比,上述指标具有以下规律:高渗区布井比致密区布井的稳产期长60%,稳产期结束后产量递减快,低产周期短(图8);高渗区布井比致密区布井的地层压力下降快,表明储量可以得到更快速动用(图9);高渗区布井比致密区布井的采出程度上升更快,稳产期末采出程度高51.2%,采收率高14.6%(图10)。

图8

图8   气井产气量变化特征

Fig.8   Variation characteristics of gas production in gas wells


图9

图9   储层压力下降特征

Fig.9   Characteristics of reservoir pressure drop


图10

图10   采出程度变化特征

Fig.10   Variation characteristics of recovery percentage


上述物理模拟实验结果表明,对于气藏强非均质储层,甜点储层准确预测和井位优化部署是开发好该类气藏的关键。

4 结论与认识

(1)以孔喉半径、岩心渗透率、试井渗透率、测井渗透率等为指标,建立砂岩气藏岩石微观及储层宏观非均质表征方法,研究了岩心微观孔喉、露头剖面、区块、气田4个层级的非均质性特征,结果表明对于气藏储层,无论微观上还是宏观上均表现出较强非均质性。

(2)建立全直径长岩心非均质物理模拟实验模型和方法,对比研究了高渗区布井和致密区布井2种方式的开采效果,结果表明高渗区布井开采效果远优于致密区布井,对于强气藏强非均质储层,甜点储层准确预测和井位优化部署是开发好该类气藏的关键。研究成果可为科学开发类似气藏以及提高采收率提供指导。

参考文献

QIAO J C, ZENG J H, JIANG S, et al. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation[J]. Fuel, 2019, 253: 1300-1316.

[本文引用: 1]

LI M, GUO Y H, LI Z F, et al. Pore-throat combination types and gas-water relative permeability responses of tight gas sandstone reservoirs in the Zizhou area of east Ordos Basin, China[J]. Acta Geologica Sinica:English Edition, 2019, 93(3): 622-636.

ZHU F, HU W X,CAO J, et al. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98: 116-132.

WANG Z N, LUO X R, LEI Y H, et al. Impact of detrital composition and diagenesis on the heterogeneity and quality of low-permeability to tight sandstone reservoirs: An example of the Upper Triassic Yanchang Formation in southeastern Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2020, 195:107596.

KADKHODAIE-ILKHCHI R, KADKHODAIE A, REZAEE R, et al. Unraveling the reservoir heterogeneity of the tight gas sandstones using the porosity conditioned facies modeling in the Whicher Range field, Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2019, 176: 97-115.

龙盛芳, 王玉善, 李国良, 等. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.

LONG S F, WANG Y S, LI G L, et al. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige Gas Field[J]. Lithologic Reservoirs, 2021, 33(2): 59-69.

李熙喆, 郭振华, 胡勇, 等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发, 2018, 45(1): 111-118.

LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra-deep structural gas fields in China[J].Petroleum Exploration and Development, 2018, 45(1): 111-118.

童晓光, 郭彬程, 李建忠, 等.中美致密砂岩气成藏分布异同点比较研究与意义[J]. 中国工程科学 ,2012, 14(6): 9-15.

TONG X G, GUO B C, LI J Z, et al. Comparison study on accumulation & distribution of tight sandstone gas between China and the United States and its significance[J]. Strategic Study of CAE, 2012, 14(6): 9-15.

晏宁平, 张宗林, 何亚宁, 等. 靖边气田马五1+2气藏储层非均质性评价[J]. 天然气工业, 2007,27(5):102-103.

YAN N P, ZHANG Z L, HE Y N, et al. Heterogeneity appraisal of Majiagou-51+2 gas reservoir in Jingbian Gas Field[J]. Natural Gas Industry, 2007,27(5): 102-103.

高志勇, 韩国猛, 张丽华. 河流相沉积中的准层序——以四川中部须家河组为例[J]. 石油与天然气地质, 2007,28(7): 59-68.

GAO Z Y, HAN G M, ZHANG L H. Parasequence of fluvial deposit:A case study of the Xujiahe Formation in central Sichuan[J]. Oil & Gas Geology, 2007,28(7): 59-68.

赵文智, 汪泽成, 朱怡翔, 等. 鄂尔多斯盆地苏里格气田低效气藏的形成机理[J]. 石油学报, 2005, 26(5): 9-13.

ZHAO W Z, WANG Z C, ZHU Y X, et al. Forming mechanism of low-efficiency gas reservoir in Sulige Gas Field of Ordos Basin[J]. Acta Petrolei Sinica, 2005, 26(5): 9-13.

宋文海. 乐山—龙女寺古隆起大中型气田成藏条件研究[J]. 天然气工业, 1996, 16(S1): 13-26.

[本文引用: 1]

SONG W H. Research on reservoir-formed conditions of large-medium gas fields of Leshan-Longnvsi palaeohigh[J]. Natural Gas Industry, 1996, 16(S1): 13-26.

[本文引用: 1]

WU H, ZHANG C L, JI Y L, et al. Pore throat characteristics of tight sandstone of Yanchang Formation in eastern Gansu, Ordos Basin[J]. Petroleum Research, 2018, 3(1): 33-43.

[本文引用: 1]

胡勇, 李熙喆, 万玉金, 等. 致密砂岩气渗致密砂岩气渗流特征物理模拟[J]. 石油勘探与开发, 2013, 40 (5): 580-584.

HU Y, LI X Z, WAN Y J, et al. Physical simulation on gas percolation in tight sandstone[J]. Petroleum Exploration and Development, 2013, 40(5): 580-584.

叶成林, 王国勇, 何凯, 等. 苏里格气田储层宏观非均质性——以苏53区块石盒子组8段和山西组1段为例[J]. 石油与天然气地质, 2011, 32(2): 236-244.

[本文引用: 1]

YE C L, WANG G Y, HE K, et al. Macro heterogeneity of reservoirs in Sulige Gasfield: A case study of the 8th member of the Shihezi Formation and the 1st member of the Shanxi Formation in the Su 53 block[J]. Oil & Gas Geology, 2011, 32(2): 236-244.

[本文引用: 1]

ZHANG F, JIANG Z X, SUN W, et al. Effect of microscopic pore-throat heterogeneity on gas-phase percolation capacity of tight sandstone reservoirs[J]. Energy & Fuels, 2020, 34(10): 12399-12416.

[本文引用: 1]

XIAO Z K, DING W L,HAO S Y, et al. Quantitative analysis of tight sandstone reservoir heterogeneity based on rescaled range analysis and empirical mode decomposition: A case study of the Chang 7 reservoir in the Dingbian Oilfield[J].Journal of Petroleum Science and Engineering, 2019, 182: 106326.

QU Y Q, SUN W, TAO R D, et al. Pore-throat structure and fractal characteristics of tight sandstones in Yanchang Formation,Ordos Basin[J].Marine and Petroleum Geology, 2020, 120: 104573.

LI Z, WU S H, XIA D L, et al. An investigation into pore structure and petrophysical property in tight sandstones: A case of the Yanchang Formation in the southern Ordos Basin, China[J]. Marine and Petroleum Geology,2018,97:390-406.

吴浩, 张春林, 纪友亮, 等. 致密砂岩孔喉大小表征及对储层物性的控制——以鄂尔多斯盆地陇东地区延长组为例[J]. 石油学报, 2017, 38(8): 876-887.

[本文引用: 1]

WU H, ZHANG C L, JI Y L, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties: A case study of Yanchang Formation, eastern Gansu, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 876-887.

[本文引用: 1]

李熙喆, 卢德唐, 罗瑞兰, 等. 复杂多孔介质主流通道定量判识标准[J]. 石油勘探与开发, 2019, 46(5): 943-949.

[本文引用: 1]

LI X Z, LU D T, LUO R L, et al. Quantitative criteria for identifying main flow channels in complex porous media[J]. Petroleum Exploration and Development, 2019, 46(5): 943-949.

[本文引用: 1]

李熙喆, 罗瑞兰, 胡勇, 等. 孔隙型砂岩储集层主流通道指数及矿场应用[J]. 石油勘探与开发, 2020, 47(5): 984-989.

[本文引用: 1]

LI X Z, LUO R L, HU Y, et al. Main flow channel index in porous sand reservoirs and its application[J]. Petroleum Exploration and Development, 2020, 47(5): 984-989.

[本文引用: 1]

/