天然气地球科学, 2022, 33(10): 1554-1570 DOI: 10.11764/j.issn.1672-1926.2022.04.012

天然气地质学

柴东欧南凹陷上石炭统克鲁克组构造背景、物质来源及沉积环境——来自细粒沉积岩元素地球化学的证据

施辉1,2,3, 李宗星,1, 彭博1, 孙玉琦4, 张浩1, 杨元元1, 胡俊杰1, 方欣欣1, 魏小洁1

1.中国地质科学院地质力学研究所,北京 100081

2.自然资源部古地磁与古构造重建重点实验室,北京 100081

3.中国地质调查局油气地质力学重点实验室,北京 100081

4.青海煤炭地质局,青海 西宁 810001

The tectonic setting, material source and paleoenvironment of the Upper Carboniferous Keluke Formation in the Ounan Depression of the eastern Qaidam Basin: Evidence from element geochemistry of fine-grained sedimentary rocks

Hui SHI1,2,3, Zongxing LI,1, Bo PENG1, Yuqi SUN4, Hao ZHANG1, Yuanyuan YANG1, Junjie HU1, Xinxin FANG1, Xiaojie WEI1

1.Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China

2.Key Laboratory of Paleomagnetism and Tectonic Reconstruction,Ministry of Natural Resources,Beijing 100081,China

3.Key Laboratory of Petroleum Geomechanics,China Geological Survey,Beijing 100081,China

4.Qinghai Bureau of Coal Geology,Xi’ning 810001,China

通讯作者: 李宗星(1982-),男,山东济宁人,正高级工程师,博士,主要从事盆地构造—热演化和油气成藏研究.Email:lizongxing@cags.ac.cn.

收稿日期: 2022-02-18   修回日期: 2022-04-19   网络出版日期: 2022-04-28

基金资助: 中国地质调查局地质调查项目.  DD20190107.  DD20190094
中国地质科学院基本科研业务费项目.  DZLXJK202006

Received: 2022-02-18   Revised: 2022-04-19   Online: 2022-04-28

作者简介 About authors

施辉(1983-),男,湖北黄冈人,副研究员,博士,主要从事油气地质及成藏机理等相关研究.E-mail:shui@mail,cgs.gov.cn.

摘要

柴达木盆地东部(简称柴东)欧南凹陷上石炭统克鲁克组获得油气发现,但该层段的构造背景、物质来源与沉积环境动态演化过程研究依然较薄弱。通过对欧南凹陷东北侧柏树沟露头上石炭统克鲁克组(C2k)细粒沉积岩开展元素地球化学研究,结果表明,欧南凹陷在C2k沉积期是阿尼玛卿洋壳向北俯冲控制的主动大陆边缘活动背景下弧后裂陷盆地的组成部分,南部的柴北缘加里东构造带向其提供酸性岩浆岩为主要母岩的陆源碎屑,北部的宗务隆海槽由于枕状玄武岩喷发和低温蚀变产生溶解硅,经海底洋流上升引发硅质浮游生物群落的繁盛而沉积生物硅。C2k沉积期处于全球范围晚古生代冰期的第Ⅲ期事件,共识别出3期次间冰期(升温事件A、B和C)。古气候温度升高引发冰川型海侵,水体随之加深,缺氧程度增强,海水的回灌和升温蒸发作用使盐度升高而咸化;其中升温B期的温度升高强度和海平面上升幅度均强于升温A期和C期,对应于C2k最大海泛面,古水体达到弱还原状态,宗务隆海槽方向以硅质生物为代表的海洋低等水生生物供给数量增多,其他时段主要受柴北缘构造带方向陆源有机质的影响。以上研究结果及认识为探索柴达木盆地石炭纪构造—沉积—古地理演化过程和有机质富集机制提供了依据。

关键词: 元素地球化学 ; 构造背景 ; 沉积环境 ; 欧南凹陷 ; 克鲁克组 ; 柴达木盆地

Abstract

The research for tectonic setting, material source and paleoenvironment of Keluke Formation in the Lower Carboniferous remains weak, although hydrocarbons have been discovered in the formation of Ounan Depression, which is located in the east of northern Qaidam Basin. The study about element geochemistry of the C2k fine-grained deposits from the Baishugou outcrop in the northeastern depression has been investigated; and the results indicate that the depression should be one part of the back-arc rifted basin, which developed in the tectonic setting of active continental margin while the Animachen ocean crust subducting northward during C2k. Terrigenous detrital materials were provided into the depression from parent rocks of the North Qaidam Orogenic Belt in the south, which were dominated by acidic igneous rocks. The pillow basalt were erupted in the Zongwulong Rough to the north of the depression, which were easily eroded to the dissolved silica, carried by the upwelling into the depression and subsequently transformed to the biogenic silica by thriving siliceous plankton organisms. The C2k stage was in the phase III of the late Paleozoic ice age and three interglacial warming events (periods A, B and C) have been identified, when the temperature increment causing the transgression for the glacial ablation, palaeobathymetric increasing, anoxic event and salinity growing for the seawater recharge and heating evaporation. The intensity of temperature rise and the extent of sea level rise in the warming period B were stronger than that in the periods A and C, when the sea level reached the maximum sea surface and depositional environment was weakly-reductive in the study area during C2k. The C2k paleoproductivity in the outcrop was composed of terrigenous plants and ocean aquatic organisms such as siliceous organism, respectively from the directions of North Qaidam Orogenic Belt and Zongwulong Rough, which are the typical mixed terrestrial and marine organic matters. The input intensity of ocean aquatic organic matters reached the maximum in the warming period B and it was primary influenced by the terrigenous organic matter in the other periods. This study has significance for comprehending the tectonic-sedimentary-palaeogeographic evolution process and mechanism of organic matter enrichment in the Carboniferous of the Qaidam Basin.

Keywords: Elemental geochemistry ; Tectonic setting ; Paleoenvironment ; Ounan Depression ; Keluke Formation ; Qaidam Basin

PDF (7897KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

施辉, 李宗星, 彭博, 孙玉琦, 张浩, 杨元元, 胡俊杰, 方欣欣, 魏小洁. 柴东欧南凹陷上石炭统克鲁克组构造背景、物质来源及沉积环境——来自细粒沉积岩元素地球化学的证据. 天然气地球科学[J], 2022, 33(10): 1554-1570 DOI:10.11764/j.issn.1672-1926.2022.04.012

Hui SHI, Zongxing LI, Bo PENG, Yuqi SUN, Hao ZHANG, Yuanyuan YANG, Junjie HU, Xinxin FANG, Xiaojie WEI. The tectonic setting, material source and paleoenvironment of the Upper Carboniferous Keluke Formation in the Ounan Depression of the eastern Qaidam Basin: Evidence from element geochemistry of fine-grained sedimentary rocks. Natural Gas Geoscience[J], 2022, 33(10): 1554-1570 DOI:10.11764/j.issn.1672-1926.2022.04.012

0 引言

柴达木盆地位于青藏高原北部,为祁连山、昆仑山和阿尔金山所限,呈东西长850 km、南北宽150~300 km的近似菱形,面积约为12.1×104 km2,是我国西北地区重要的含油气盆地之一,中—新生界为产油气主力层位1。近年来的研究证实1-5,盆地古生界—下三叠统发育海相或海陆过渡相沉积,其中石炭系残余地层分布广泛且受变质作用的破坏相对有限,油气资源潜力较大,有望成为盆地“增储上产”的含油气新层系。部署在柴达木盆地东部(简称柴东)欧南凹陷的CY2井、QDD1井、QDC1井等钻井在上石炭统克鲁克组(C2k)获得油气发现3,因此C2k成为盆地石炭系油气调查与勘探的重点关注层位。

柴东欧南凹陷及其周缘C2k是碎屑岩和碳酸盐岩混合的沉积层,属三角洲—潮坪—障壁岛—局限台地—浅海陆棚沉积体系4,潮坪和浅海陆棚相泥页岩厚度大、有机质丰度高6-7,三角洲和局限台地相分别发育砂岩和碳酸盐岩礁滩储集体4,具有较好的油气成藏要素配置条件。根据对欧南凹陷西部SQ1井上石炭统部分砂砾岩样品的元素地球化学分析8,晚石炭世柴北缘呈“南山—北海”的盆山格局,是一个受北侧宗务隆海槽向南扩张控制的大陆边缘型克拉通盆地,碎屑物质来源于早古生代柴北缘超高压造山带的酸性岩浆岩。烃源岩有机地球化学证据显示9-10,凹陷C2k烃源岩可能形成于弱氧化—弱还原的咸水环境。以上成果认识为该地区C2k沉积期的构造背景、物质来源与沉积环境研究奠定了重要基础,但迄今仍缺乏细粒沉积岩的完整元素地球化学分析,制约了对构造、物源、环境之间耦合演化关系的理解,也限制了对沉积层序和烃源岩分布的认识,是影响石炭系油气调查与勘探进展的首要关键问题。

C2k沉积时处于全球范围晚古生代冰期 (Late Paleozoic Ice Age,LPIA)事件的重要冰盛期(第Ⅲ期)11,LPIA气候变化引起的环境、生物与资源能源的响应是学界关注的前沿热点之一12。本文针对研究区石炭系钻井稀少且岩心不连续的客观现实,选择C2k出露完整的尕海南山南坡柏树沟剖面开展元素地球化学测试,分析了构造背景、物质来源和沉积环境(包含古气候、盐度、水深、氧化—还原及初级生产力等)的耦合演化关系,为探索盆地东部LPIA地质纪录、石炭系有机质富集机制和区域性油气勘探提供参考依据。

1 地质背景

柴东地区自北向南依次发育南祁连宗务隆构造带、德令哈凹陷、欧龙布鲁克凸起、欧南凹陷、埃姆尼克凸起、霍布逊凹陷和昆仑山构造带[图1(a),图1(b)],呈现“三隆夹两凹”的构造格局35图2)。欧南凹陷及周缘地区石炭系自下而上依次发育下石炭统城墙沟组(C1ch)和怀头他拉组(C1h),以及上石炭统的克鲁克组(C2k)与扎布萨尕秀组(C2zh)。C2k与我国北方地区本溪组(C2b)相对应,属莫斯科阶(国际地层)和达拉阶(中国地层),大致年代为315.2~307.1 Ma;C2zh可与太原组对比,相当于晚石炭世逍遥期至早二叠世早期沉积(紫松阶),对应于卡西莫夫阶、格舍尔阶和阿瑟尔阶,年代为307.1~295.5 Ma13

图1

图1   柴北缘东段区域(a)、构造纲要(b)和柏树沟露头地质图(c)

Fig.1   Location(a), tectonic division(b) of the east of northern Qaidam Basin and the geologic map(c) of outcrop Baishugou section


图2

图2   柴北缘东段NS向构造剖面

Fig.2   North-south cross section of the east of northern Qaidam Basin


大地构造背景研究结果表明14-18:石炭纪阿尼玛卿洋持续向北俯冲,大地构造背景由寒武纪—泥盆纪挤压应力场转变为伸展应力场,柴达木陆块在格尔木陆岛以北,处于弧后环境;欧龙布鲁克微地块(欧南凹陷—欧龙布鲁克凸起—德令哈凹陷)发生沉降,而宗务隆构造带形成裂陷海槽,扩张构造活动一直持续到二叠纪中晚期。本文研究的欧南凹陷在早石炭世晚期—早二叠世主要受到宗务隆海槽自北向南海侵超覆影响,发育浅海陆棚—碳酸盐岩台地沉积体系的碎屑岩—碳酸盐岩混合沉积物,属典型海陆交互沉积相带19

2 野外露头及样品

尕海南山南坡柏树沟剖面位于青海省海西蒙古族自治州德令哈市东南方向45 km处[图1(a),图1(b)],起点坐标为97.496 5°E,36.946 7°N。柏树沟主要出露下石炭统的C1h和上石炭统的C2k与C2zh图1(c)],C1h直接超覆于上泥盆统阿木尼克组(D3a)之上,总厚度约为250 m,主体岩性为深灰色厚层灰岩(图3)。

图3

图3   柏树沟剖面C2k 岩性柱状图及野外照片

①C1h(灰色厚层状生屑灰岩)与C2k(灰色—灰黄色泥页岩/泥质粉砂岩)假整合接触;②薄层泥晶灰岩夹黑色炭质页岩;③深灰色—黑色页岩;④页岩中泥晶灰岩透镜体;⑤生物碎屑灰岩,含海百合及珊瑚碎片;⑥泥晶灰岩中燧石条带;⑦厚层灰岩夹黑色页岩;⑧灰色厚层状细砾岩,石英砾为主

Fig.3   C2k lithological column and field photographs of the Baishugou section


上石炭统C2k与C1h呈假整合接触,是一套海、陆交互沉积地层(厚度约为320 m,见图3中①),下部发育三角洲相含煤建造,岩性以深灰色—灰色泥、页岩为主,夹薄煤层、灰色—灰绿色粉—细砂岩与泥晶灰岩(图3中②—④);中、上部是滨岸—潮坪相碎屑岩—碳酸盐岩建造,发育厚层深灰色炭质页岩与厚层灰色生物、泥—粉晶灰岩及灰白色—灰黄色砂岩互层,其中灰岩含硅质条带(图3中⑤—⑦)。C2zh整合接触于C2k,底部发育厚层状细砾岩,石英砾石含量较高(图3中⑧),向上过渡至浅灰色粗—中粒石英砂岩、深灰色泥晶灰岩。

本文研究共采集15块C2k和1块C2zh底部细粒沉积岩(泥/页岩及极少量泥质粉砂岩)样品,样品分布见图3,开展主量、微量和稀土元素含量测试;主量元素分析采用X荧光光谱(XRF,仪器为PANalytical PW2424),精度优于1%~3%,微量元素和稀土元素利用Thermofisher ICP-MS/ICP-OES电感耦合等离子体质谱仪(Agilent 7700x型),相对标准偏差小于5%,测试流程依据《岩石和矿石化学分析方法总则及一般规定》(GB/T 14505—2010)等相关标准20-22。本文进行元素含量对比分析参照了上地壳(Upper Continental Crust,UCC)23、北美页岩成分(North American Shale Composite,NASC)24、后太古界澳大利亚页岩(Post-Archean Australian Shale, PAAS)25和球粒陨石25的相关数据。

3 元素地球化学特征

3.1 主量元素

柏树沟剖面C2k泥页岩主量元素含量以SiO2(29.84%~95.30%,均值为59.29%)和Al2O3(0.42%~34.91%,均值为12.11%)为主,其次是CaO(0.07%~27.56%,均值为5.70%)、Fe2O3(0.01%~10.51%,均值为3.38%)、K2O(0.02%~2.60%,均值为1.58%)、MgO(0.04%~2.81%,均值为1.20%)、FeO(0.07%~3.26%,均值为1.05%),含少量TiO2(0.01%~1.04%,均值为0.45%)、Na2O(0.04%~0.71%,均值为0.25%)、P2O5(0.03%~0.56%,均值为0.14%)、MnO(0.01%~0.21%,均值为0.04%)(表1)。泥页岩样品中含大量有机质,导致样品的烧失量(LOI)较高(平均值为16.29%)。

表1   柏树沟剖面C2k 泥页岩主量元素测试结果

Table 1  Major element test results of C2k shales and mudstones in the Baishugou section

样品编号岩性

剖面深度

/m

主量元素/%
Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3FeOLOI
BSG-0泥页岩52.070.710.679.2835.220.261.510.250.510.016.150.2340.2
BSG-1泥页岩83.350.191.119.4575.230.042.250.270.420.014.90.25.92
BSG-2泥页岩109.400.220.716.3129.840.291.230.560.370.0410.513.0535.33
BSG-3泥页岩128.500.092.813.1342.480.070.5326.220.120.040.30.824.15
BSG-4泥页岩150.150.111.0915.645.120.062.150.320.510.126.51.424.62
BSG-5泥页岩155.300.110.587.4186.060.032.150.210.260.041.020.722.53
BSG-6泥页岩158.410.20.8916.3864.430.052.370.280.830.0052.091.1311.34
BSG-7泥页岩184.240.151.2710.8867.690.522.230.850.370.023.80.7111.51
BSG-8泥页岩202.320.040.210.6661.940.030.0220.320.010.020.010.0816.57
BSG-9泥页岩220.180.060.040.4295.30.040.021.980.010.0050.010.072.03
BSG-10泥页岩287.150.321.129.8166.020.212.021.530.450.015.580.7812.16
BSG-11泥页岩309.560.432.0718.6853.070.132.344.560.750.124.450.8112.58
BSG-12泥页岩343.360.651.8119.5858.30.092.60.420.830.024.071.3110.32
BSG-13泥页岩349.580.181.415.4231.90.560.527.560.140.211.263.2627.6
BSG-14泥页岩377.480.382.2712.9568.220.032.520.410.560.016.230.446.77
BSG-15泥页岩388.610.670.6434.9143.730.030.790.071.040.0010.041.0217.06

新窗口打开| 下载CSV


据C2k泥页岩主量元素间相关系数统计(表2),Al2O3和TiO2含量之间的相关性最好,相关系数(Pearson's r,皮尔逊积矩相关系数)约为0.92。细粒沉积岩中Al和Ti元素稳定性较强,受风化作用的影响较弱,反映河流或风成等陆源硅质碎屑物质的丰度26,Al2O3和TiO2含量之间的高相关性说明C2k沉积期为柏树沟所在欧南凹陷地区供给陆源碎屑物质的物源区母岩一直较稳定,未发生显著变化。其次,SiO2除了与K2O含量呈正相关关系(Pearson's r=0.17)以外,与其他元素均为负相关(表 2)。沉积物中K元素主要来源于伊利石或钾长石,但K+也是海水中主要的阳离子之一27,Si元素与陆源碎屑元素(Al和Ti)含量的反相关及与K元素含量的正相关反映出SiO2的输入还受到除陆源供给以外其他来源的影响,可能海水亦是SiO2的重要输送载体。

表2   柏树沟剖面C2k 泥页岩主量元素间相关系数

Table 2  Correlation coefficient of major elements of C2k shales and mudstones in the Baishugou section

主量元素Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFeOT
Na2O1.00
MgO0.141.00
Al2O30.660.091.00
SiO2-0.35-0.26-0.331.00
P2O5-0.020.050.44-0.421.00
K2O0.290.350.390.17-0.071.00
CaO-0.380.29-0.50-0.350.26-0.641.00
TiO20.740.180.92-0.20-0.210.59-0.571.00
MnO-0.190.26-0.08-0.460.47-0.090.50-0.171.00
FeOT0.200.140.26-0.470.340.44-0.350.210.191.00

注:*FeOT=Fe2O3+FeO

新窗口打开| 下载CSV


3.2 微量元素

柏树沟剖面C2k泥页岩样品的微量元素(20种)含量测试结果显示:Cr(平均为485.15 μg/g)、Sr(平均为308.50 μg/g)、Ba(平均为188.30 μg/g)、Zr(平均为111.47 μg/g)、V(平均为89.26 μg/g)、Rb(平均为71.50 μg/g)等亲石微量元素含量较高,其次为Zn(平均为47.76 μg/g)、Ni(平均为41.22 μg/g)、Pb(平均为24.41 μg/g )、Cu(平均为22.36 μg/g)、Y(平均为18.68 μg/g)、Ga(平均为16.78 μg/g)、Th(平均为13.41 μg/g)、U(平均为10.41 μg/g)、Nb(平均为10.21 μg/g)、Sc(平均为10.05 μg/g)等元素 (表3)。

表3   柏树沟剖面C2k 泥页岩微量元素测试结果

Table 3  Trace element results of C2k shales and mudstones in the Baishugou section

样品编号微量元素/(μg/g)
CrSrBaZrVRbZnNiPbCuYGaThUNbScCsCoMoHf
BSG-0101.46280.12133.12104.86136.4775.5822.787.2919.6434.0213.0018.9713.2345.8211.7410.737.401.835.173.29
BSG-1135.98213.22313.6492.45100.58112.3143.9543.6424.8127.1014.0218.6914.203.959.858.707.236.832.332.68
BSG-2129.94243.47145.8775.64236.8759.7265.3231.1628.6649.8119.8821.3917.8623.417.5511.675.8118.9749.982.02
BSG-393.92722.43111.4914.1620.4516.6820.1411.1420.8526.228.453.513.672.671.782.531.292.362.780.42
BSG-4154.25224.43166.67106.87104.7798.8432.4630.6831.1352.4019.1422.2217.0638.189.2113.349.619.562.152.88
BSG-5387.28100.6655.1175.6631.2921.499.226.688.6320.485.837.457.222.636.022.491.121.061.542.23
BSG-6215.29144.84268.63206.48148.33126.4923.3568.2853.2813.9328.4425.0124.656.6619.7914.8213.653.201.566.25
BSG-7183.54273.25275.5778.2459.44115.6377.2467.5230.4526.5251.3819.0418.567.458.9210.0711.694.412.062.57
BSG-82.62382.26145.9716.472.331.0119.7224.742.437.214.660.420.181.270.130.300.277.490.190.42
BSG-90.3758.2116.394.000.460.247.213.480.820.812.160.280.101.070.070.110.040.150.160.14
BSG-1077.84613.41259.18101.5465.6282.1259.7312.1049.0113.8314.1419.0811.645.539.849.928.082.692.013.08
BSG-11117.23354.75270.92172.0697.32118.31114.4860.4348.2419.2925.7226.1416.964.2815.4616.8512.1319.451.014.73
BSG-12204.96142.39347.37169.57121.98128.54113.8786.2921.7418.3619.9826.9416.453.8917.7218.2613.1111.631.364.75
BSG-135 623.501 066.56205.0725.7282.5318.2527.7952.7016.0913.0019.297.713.034.552.254.481.0410.183.820.77
BSG-14150.7679.72238.84170.6262.28135.8598.5263.7724.0230.3118.5119.0018.573.7512.8211.9019.1116.800.535.08
BSG-15183.5236.2358.97369.24157.5332.9628.4689.5810.724.4434.2132.6331.2211.3930.1824.6118.3210.780.839.66
平均值485.15308.50188.30111.4789.2671.5047.7641.2224.4122.3618.6816.7813.4110.4110.2110.058.127.964.843.18
EF元素11.232.440.460.840.940.710.891.191.930.711.101.331.465.320.850.860.557.671.01

新窗口打开| 下载CSV


为减少陆源组分和碳酸盐等沉积物对自生微量元素的干扰,通常采用PAAS样品Al元素对微量元素进行标准化数据处理,以富集系数(EF)的形式表示28,即EF元素=(元素/Al)样品/(元素/Al)PAAS。若EF元素>1,表明该元素相对富集,反之则亏损。从富集系数来看,元素富集程度Cr(11.23)>Mo(7.67)>U(5.32)>Sr(2.44)>Pb(1.93)>Th(1.46)>Ga(1.33)>Ni(1.19)>Y(1.10)>Hf(1.01),其他微量元素则相对亏损(表3)。

3.3 稀土元素

该剖面C2k泥页岩稀土元素含量(∑REE)介于5.42~330.34 μg/g之间,稀土元素分布差异性较强(表4);∑REE均值为170.40 μg/g,处于NASC平均值167.96 μg/g和PAAS平均值184.77 μg/g之间。其中,轻稀土含量(∑LREE)在2.61~242.01 μg/g的范围分布(均值为138.35 μg/g),重稀土含量(∑HREE)约为0.64~36.94 μg/g(均值为13.38 μg/g),∑LREE/∑HREE值平均为10.26,高于NASC(7.30)和PAAS(9.50)的稀土元素相应比值。

表4   柏树沟剖面C2k 泥页岩稀土元素测试结果

Table 4  REE test results of C2k shales and mudstones in the Baishugou section

样品编号稀土元素/(μg/g)
LaCePrNdSmEuGdTbDyHoErTmYbLu
BSG-044.5972.977.8924.153.640.612.760.432.130.421.470.322.630.44
BSG-136.6774.4210.1735.294.570.672.910.512.500.431.530.291.970.32
BSG-232.6557.648.0429.815.971.134.840.783.890.822.140.342.000.32
BSG-37.9713.891.706.501.320.281.380.211.120.260.660.100.580.09
BSG-445.2374.139.4432.335.270.954.050.653.300.742.020.332.000.32
BSG-513.6026.242.849.941.530.191.180.191.020.240.650.110.640.11
BSG-655.19110.8912.4140.677.241.135.580.974.960.923.000.533.910.59
BSG-760.8099.3613.3852.8913.052.5312.102.1510.191.654.590.764.760.74
BSG-81.894.641.317.682.290.401.490.231.080.170.380.070.440.04
BSG-90.910.570.190.770.140.030.160.020.150.030.070.030.190.01
BSG-1044.2679.169.6433.375.881.014.040.642.940.501.600.292.220.35
BSG-1147.0592.9810.9136.736.961.335.781.004.900.842.510.452.920.42
BSG-1246.7289.5110.0332.845.781.014.360.713.580.642.080.382.700.39
BSG-1321.8441.325.6524.075.491.325.360.793.660.721.600.211.050.16
BSG-1457.2096.4612.4439.966.761.014.930.803.600.612.010.382.570.40
BSG-1542.3268.768.0625.574.800.844.210.915.180.962.960.533.560.52

新窗口打开| 下载CSV


(La/Yb)N和(Gd/Yb)N是经球粒陨石标准化稀土元素分布型式大体斜率(N为球粒陨石标准化,下同),均反映轻、重稀土的分异程度28。C2k泥页岩(La/Yb)N和(Gd/Yb)N值分别分布在2.91~15.29和0.69~4.14之间,二者均值(10.72和1.67)均高于NASC(6.69和1.36)和PAAS(9.15和1.34)(表5),说明C2k泥页岩稀土元素分异程度相对较高,轻稀土分异较重稀土分异明显。

表5   柏树沟剖面C2k 泥页岩稀土元素地球化学指标参数(均值)

Table 5  REE geological parameters of C2k shales and mudstones in the Baishugou section (average)

构造背景/样品LaCe∑REELREE/HREELa/Yb(La/Yb)NGd/Yb(Gd/Yb)NδEu
/(μg/g)
大洋岛弧8±1.719±3.758±103.8±0.94.2±1.32.8±0.91.04±0.11
大陆岛弧27±4.559±8.2146±207.7±1.711.0±3.67.5±2.50.79±0.13
活动大陆边缘37781869.112.58.50.6
被动大陆边缘39852108.515.910.80.56
NASC3270167.967.3510.326.971.681.360.70
PAAS38801839.6913.579.151.651.340.65
研究区34.9362.68151.7310.2615.8710.722.061.670.61

注:*∑LREE=La+Ce+Pr+Nd+Sm+Eu;∑HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;δEu=EuN/(SmN× GdN1/2;大洋岛弧、大陆岛弧、活动大陆边缘和被动大陆边缘等构造背景REE参指标来源于文献[25

新窗口打开| 下载CSV


球粒陨石标准化REE分布型式整体呈中等右倾型,即轻稀土元素相对富集,重稀土元素亏损,明显Eu负异常[图 4(a)];NASC标准化REE分布型式整体近于平缓,略微左倾,无明显Eu峰和谷的异常[图 4(b)]。BSG-8和BSG-9共2个岩石样品REE分布型式与其他样品显著不同,Ce负异常幅度较大,重稀土元素总体较其他样品富集,Tm和Yb元素的富集现象尤其明显(图 4)。

图4

图4   柏树沟剖面C2k 泥页岩稀土元素REE分布型式

Fig.4   REE distribution patterns of C2k shales and mudstones in the Baishugou section


4 物质来源与构造背景

4.1 陆源碎屑来源

沉积岩中Al和Ti元素通常来自于陆源碎屑,受热液交代、成岩及风化作用的影响相对较弱26,柏树沟剖面C2k泥页岩Al2O3与TiO2含量相关性显著(表2),反映出相对稳定的陆源碎屑来源。TiO2—SiO2图解29显示陆源碎屑物质母源主要是火成岩,少量来源于沉积岩母岩[图5(a)],该结论与∑REE—La/Yb图解30所识别的结果吻合[图5(b)],表明C2k沉积时期露头地区一直接受混杂花岗岩、玄武岩和沉积岩为母岩的陆源碎屑物质。

图5

图5   柏树沟剖面C2k 泥页岩母岩类型判别

(a)SiO2—TiO2[29];(b)∑REE—La/Yb[30];(c)TiO2—Al2O3[31];(d)Zr—TiO2[32]

Fig.5   Identification plots of parent rock types of C2k shales and mudstones in the Baishugou section


Al/Ti值对沉积物母岩组分敏感,该值在3~8、8~21和21~70之间分别反映基性、中性和酸性火成岩的母岩组分信息31-32,TiO2—Al2O3图5(c)]、Zr—TiO2图5(d)]交会图均判识C2k泥页岩陆源碎屑物质的火成岩母岩主要表现出偏酸性的特征,可能含少量中性岩浆岩。

稀土元素在水体中溶解度极低,滞留时间短,风化、搬动及成岩过程中组成变化较小,是沉积物示踪分析的可靠指标33。BSG-8、BSG-9样品REE分布型式与大部分C2k泥页岩样品存在较大区别,其他样品虽然具有类似分布型式,但在稀土元素总含量、重稀土元素分异程度等方面仍略有差异(图3),说明沉积物除陆源碎屑来源以外,应该还接受以BSG-8、BSG-9样品为代表的一类次要物质来源。

4.2 SiO2来源

剖面C2k泥页岩样品SiO2含量较高,大于UCC(66%)和PAAS(62.8%)SiO2含量,按照伊利石矿物和陆源碎屑Si/Al值约为2.0和3.3进行推算34,Al2O3—SiO2交会图[图 6(a)]上显示大部分C2k泥页岩样品均落在“过量硅”区域,反映泥页岩普遍存在“过量硅”现象。

图6

图6   柏树沟剖面C2k 泥页岩过量SiO2分析

(a) Al2O3—SiO2交会图[35];(b)Fe—Al—Mn三角图[37]

Fig.6   Analysis of excess SiO2 in C2k shales and mudstones in the Baishugou section


过量硅(Excess SiO2)含量是指高于正常碎屑沉积环境下的SiO2含量,计算公式为:Si过量=Si样品-[(Si/Al)正常×Al样品],单位为%,其中(Si/Al)正常一般取平均页岩比值3.1135。通过折算后发现,剖面C2k泥页岩的过量硅含量约在6.36%~93.99%之间[图6(a)],均值为38.88%,表明泥页岩中SiO2除陆源碎屑供给以外,还有其他来源。据前人36研究,海相页岩中硅质来源包括陆源、生物成因、热液及火山沉积等,对含过量硅泥页岩样品的Al、Fe、Mn等元素组成特征分析[图6(b)],发现其SiO2为生物成因(或冷水成因)硅质37,即C2k沉积物除陆源碎屑物质提供SiO2以外,硅质生物残骸(生物硅)亦是SiO2的重要来源。

BSG-9号样品的∑REE值仅为3.26 μg/g,低于大部分样品∑REE值1~2个数量级,REE分布型式表现出异常明显的Ce负异常,HREE相对富集,区别于PAAS标准化后泥页岩相对平坦的配分模式[图4(b)],与海水的REE配分模式相近38。HREE较容易与海水中碳酸根络合物导致富集,LREE易为陆源碎屑颗粒所吸附造成亏损39,结合该样品的 SiO2含量高达95.3%,且具有生物成因的SiO2来源,因此本文推测BSG-9号样品REE的分异受到陆源碎屑物质的影响相对较弱,而海水与硅质生物活动所起作用增强。

据前人40研究,柏树沟剖面北部的宗务隆构造带内石炭系果可山组(属宗务隆分区C2地层)发育超镁铁质岩石(枕状玄武岩)、硅质岩和辉绿岩墙,属典型蛇绿岩组合,代表该地区晚古生代(玄武岩Rb-Sr等时线测年318±3 Ma)洋壳残余。海底热液喷发和低温玄武岩风化是海洋水体溶解硅的重要来源41,而且,宗务隆石炭系玄武岩球粒陨石标准化REE配分模型呈现平坦的曲线分布且Eu弱负异常,BSG-9号样品REE配分模型曲线与之相类似。据此,本文认为柏树沟剖面C2k泥页岩中过量硅可能来源于宗务隆海槽,海槽内频繁的热液活动和枕状玄武岩的低温蚀变使SiO2溶解到海水中,富溶解硅的海底洋流在上升过程中为硅质生物所吸收导致硅质浮游生物群落繁盛,硅质生物残骸随上升流或在海侵作用下被输送至研究区附近与陆源碎屑物质堆积成细粒沉积,或与碳酸盐一起沉积,如图3照片⑥中泥晶灰岩中的硅质条带。

4.3 构造背景

大量研究表明42-44:活动大陆边缘如岛弧或大陆弧背景下形成的沉积岩源区主要是由同期形成的安山质火山岩及侵入岩提供,而被动大陆边缘环境的沉积物由再循环沉积碎屑、古老侵入岩及变质岩组成,火山物质比例较小,与活动大陆和岛弧环境下沉积物的元素地球化学组成存在较大差异。因此,利用沉积物物源示踪元素(如Th、Sc、Co、Zr等)判别沉积物构造背景的方法获得国内外学者的广泛使用45

SiO2—K2O/Na2O图解是利用主量元素判识沉积物构造环境的常用方法46。研究区C2k样品在SiO2—K2O/Na2O图解中分布较分散,被动大陆边缘、活动大陆边缘和岛弧构造背景物源区域均有分布[图7(a)中红圆点]。鉴于泥页岩样品中发育较为普遍的“过量硅”现象,本文通过过量硅校正(即总SiO2减去过量SiO2含量),尝试利用“剩余硅”与K2O/Na2O进行投点,发现几乎所有样品点均在活动大陆边缘—岛弧沉积环境,说明陆源碎屑主要来源于活动大陆边缘—岛弧构造背景物源区。

图7

图7   柏树沟剖面C2k 泥页岩构造背景识别

(a)SiO2—K2O/Na2O[46];(b)Hf—La/Th[47]

Fig.7   Identification plots for tectonic setting of C2k shales and mudstones in the Baishugou section


微量和稀土元素对确定源区母岩组成和构造背景的优势更显著48。细粒沉积岩,La/Th—Hf图解中[图7(b)],C2k泥页岩样品主要落在混合长英质物源区及附近,少量落在安山质岛弧和被动大陆边缘附近,说明主动大陆边缘—岛弧体系构造背景的物源区供源相对较强。一些强不相容微量元素(包括稀土元素)的构造环境判别系列图解49,如La—Th—Sc、Th—Zr/10—Co和Th—Sc—Zr/10—Sc等三角图版(图8),研究区C2k泥页岩样品也大多表现出来源于“大陆岛弧—活动大陆边缘”构造活动背景的特征。在Zr/Sc—Th/Sc图解50上,多数岩石样品落在组分变化线附近,少量样品靠近沉积再旋回线[图9(a)],以及Th—Th/U图解[图9(b)]所反映的“亏损上地幔为主,低风化程度上地壳为辅”的物质来源与风化搬运特征,综合判定柏树沟C2k属于大陆岛弧—活动大陆边缘构造背景下酸性岩浆岩(含少量中性岩浆岩)的首次沉积,混杂少量沉积再循环物质。

图8

图8   柏树沟剖面C2k 泥页岩构造背景判别三角图

A:大洋岛弧;B:大陆岛弧;C:活动大陆边缘;D:被动大陆边缘

Fig.8   Discrimination plots for tectonic setting of C2k shales and mudstones in the Baishugou section


图9

图9   柏树沟剖面C2k 泥页岩物质来源及构造背景判识

(a) Zr/Sc—Th/Sc;(b)Th—Th/U

Fig.9   Discrimination plots for source and tectonic setting of C2k shales and mudstones in the Baishugou section


晚石炭世,阿尼玛卿洋壳(昆仑山以南)持续向北俯冲,柴达木总体处于弧后环境,宗务隆山出现短暂的弧后小洋盆40。结合柏树沟露头剖面C2k泥页岩元素地球化学所反映的活动大陆边缘构造背景,露头处于柴北缘加里东构造带(埃姆尼克凸起一带)的北部,属于阿尼玛卿洋壳俯冲控制的弧后裂陷盆地的组成部分。柴北缘加里东构造带主体包括鱼卡—沙柳河变质带和滩间山岛弧构造带617,发育的加里东期花岗侵入岩和部分沉积岩所形成的风化剥蚀产物是提供C2k泥页岩陆源碎屑组分的主体。

5 沉积环境

5.1 古气候与盐度

潮湿环境富集Fe、Mn、Cr、Ni、V和Co,干旱气候富集Ca、Mg、Sr、Ba、K和Na,因此C值[∑(Fe+Mn+Cr+Ni+V+Co)/∑(Ca+Mg+Sr+Ba+K+Na)]由小变大说明气候由炎热干旱变为温暖潮湿51。干热型元素Sr和温湿型元素Cu的比值(Sr/Cu)是反映古气候演化的重要指标,其值介于1~10之间指示温湿气候,而该值大于10指示干热气候51。在化学风化过程中,Sr较Rb易于迁移,低Rb/Sr值代表不利于岩石风化的干旱炎热型气候,高Rb/Sr值则代表风化作用较强的温暖湿润气候52。以上多个古气候敏感元素指标显示(图10):柏树沟剖面C2k沉积时期经历了至少3次气候从相对“温暖湿润”向“干燥炎热”的转变。

图10

图10   柏树沟剖面C2k 沉积环境与古生产力

Fig.10   Sedimentary environment and paleoproductivity of C2kin the Baishugou section


Sr比Ba元素化合物(与SO42-结合)溶解度高,迁移更远,Sr/Ba值小于0.5、0.5~1和大于1分别反映淡水、半咸水和咸水的沉积水体古盐度53。Mg元素具有亲海性,Al元素是典型陆源性元素,利用两元素建立的m值(100×MgO/Al2O3)随沉积水体盐度增大而减小54m值小于1、1~10、10~500和大于500分别对应淡水、海—陆过渡、海水和陆表海(潟湖咸水)沉积古水体盐度条件55。经Sr/Ba值和m值结果的分析(图10),研究区C2k沉积时期古水体在“淡水→咸水”的宽域盐度范围内变化,反映海陆交互的陆表海沉积背景。古盐度的升高与气候升温变干燥现象基本同步,说明沉积水体处于相对局限的地理环境,与海洋连通不畅,气候升温加速了沉积水体的咸化程度。

5.2 古水深与氧化—还原条件

沉积物搬运过程中元素稳定性具有差异性,Fe、Al、Ti稳定性比Mn、Ca、Mg等元素弱,通过Fe/Mn、Ti/Mn及(Al+Fe)/(Ca+Mg)等元素比值初步判断沉积水体古水深,其值越小代表水深越大56

本文从柏树沟剖面露头C2k细粒沉积岩古水深敏感元素指标识别出3期相对海平面的上升,沉积古水体的加深与气候干热、盐度升高的时间基本重合(图10),其中C2k中段海侵程度相对最大,也对应了相对最高的干热气候和咸化盐度。

沉积物中氧化还原敏感元素(Redox Sensitive Elements,RSE)一般包括U、V、Mo、Re、Cu、Cd、Fe、Mn等,RSE富集程度和元素比值能够表征沉积古水体氧化还原环境57。Mo与U在氧化条件呈可溶性高价态氧化物,在缺氧条件下则被还原成低价态,与其他元素或有机质发生络合反应,沉淀在沉积物中;U元素在Fe3+—Fe2+还原界面就开始被捕获,Mo元素仅在H2S还原状态(强烈缺氧)下才开始发生沉淀,或吸附于Mn的氢氧化物表面进入沉积物,U—Mo协变关系能够用来判识海盆水体滞留和氧化还原情况28

据统计分析(图11),U、Mo元素富集系数约为1.21~30.11(均值为7.03)和0.83~604.85(均值为246.52),Mo的富集程度远高于U,MoEf/UEf值绝大部分大于3×SW(seawater,海水),明显趋向于弱滞留环境趋势区,说明柏树沟地区C2k沉积水体处于半开放—半封闭状态,整体属于弱氧化—弱还原(过渡)环境。

图11

图11   柏树沟剖面C2k 细粒沉积岩Mo—U协变图

Fig.11   The Mo-U covariation plot of the C2k fine deposits in the Baishugou section


Fe元素不同价态对过渡环境的氧化还原程度的反映较灵敏,Fe2+/Fe3+=1为中性环境,大于1和小于1分别表示偏还原和偏氧化环境。稀土元素Ce在指示氧化还原状态方面效果相对明显,反映Ce与相邻La和Nb相对变化的Ce异常指数(Ceanom=Lg[3Cen/(2Lan+Ndn)]),若大于-0.1为Ce富集,指示缺氧状态,反之则为Ce亏损或负异常,指示氧化古水体58

研究区C2k细粒沉积岩Fe2+/Fe3+值的变化显示出3段缺氧状态,与水深增大、盐度变咸、气候升温的趋势区间相吻合;Ceanom值只在C2k中段出现低值区间,说明只有该层段的沉积水体缺氧程度最大(图10)。综合古气候、古盐度、古水深与氧化还原状态的变化趋势,不难发现研究区在C2k沉积时期至少经历了3期升温事件(从早至晚依次为升温A期、B期和C期,见图10),同步伴随了3期等时的古水体盐度变大、海侵变深和弱缺氧事件,其中仅升温B期的相对海平面最高,出现弱还原环境。

C2k沉积时期正处于全球范围晚古生代冰期事件的第Ⅲ期,全球海平面随冰川扩张和消融发生高频次、大振幅升降变化11。柴北缘地区在石炭纪位于北纬20°左右中低纬度59,冰川虽未直接影响该地区,但冰川型海平面升降控制C2k沉积层序结构4。柏树沟露头C2k沉积期的3期升温事件对应3个间冰期,极地冰川消融引起全球海平面上升,海水进入研究区所在的半封闭—半开放地理单元,造成沉积古水体变深和缺氧化,海水的直接灌入和升温蒸发作用使水体古盐度逐渐升高而咸化。升温B期的温度升高强度和海平面上升幅度均强于升温A期和C期,达到C2k沉积层序的最大海泛面和水体弱还原状态(图10)。

5.3 古生产力

V和Ni都是生命必需微量元素,常与生物有机质伴生,但具有不同生物富集机制。V主要以氧钒根离子(VO2+)吸附在腐殖酸和卟啉化合物中形成稳定络合物60-61,富V页岩层含丰富炭质叶绿素和陆源高等植物有机质标志化合物62- 63。Ni元素在海洋表层水体中贫乏,在深海中富集,Ni富集可能与硅藻等浮游水生生物和硫化环境有关64-65,因此,V/(V+Ni)值可大致指示陆源高等植物输入情况。

柏树沟剖面C2k细粒沉积岩普遍具有“过量硅”现象[图6(a)],经Al—Fe—Mn三角图解证实为生物成因SiO2图6(b)],与硅质浮游生物群落活动有关。通过物质来源与构造背景的分析,研究区C2k沉积不仅具有以偏酸性岩浆岩为主体,少量中性岩浆岩及再旋回沉积岩母岩风化产物来源的陆源碎屑物质,还具有海洋来源的生物硅供给,本文分别利用V/(V+Ni)值和过量硅(Si过量)为指标分析陆源和海洋输入的古生产力(图10),结果显示V/(V+Ni)值与Si过量变化曲线大致呈负相关关系,即升温B期相对海平面达到C2k最大化,研究区以海洋低等水生生物(硅质生物)输入为主,鉴于升温A期、C期冰川型海侵作用较弱,除升温B期以外时间主要受到陆源高等植物输入的影响(图10)。

以上分析说明,欧南凹陷处于柴北缘构造带与宗务隆海槽之间[图12(a)],C2k古生产力由陆源高等植物和海洋低等水生生物2种来源类型共同组成,是典型海陆过渡相混源型生物有机质类型。C2k泥页岩是该凹陷甚至整个柴东地区石炭系重要的烃源岩岩性类型,干酪根类型确实以来源于高等植物的腐殖型(III型)有机质为主,其次也发现含有来自于低等水生生物的腐泥型(II型)干酪根579。C2k升温B期冰川型海侵达到最大化,以硅质浮游生物为代表的海洋低等水生生物由上升流输送至欧南凹陷,宗务隆海槽对欧南凹陷沉积层序的控制显著增强[图12(b)],岩性表现为生物碎屑(泥晶)灰岩—碎屑岩互层并含硅质条带或结核。尽管升温A期、C期也发生过一定程度的海侵过程,但陆源物质的供给强度仍旧强于海洋供给,升温B期以外时段受陆源主控,岩性组合为含煤层碎屑岩系和泥晶灰岩,柴北缘构造带对沉积层序的影响作用相对较强烈[图12(c)]。

图12

图12   柏树沟剖面C2k 构造—沉积古地理模式

Fig.12   Schematic diagram showing the C2k tectonic setting and paleogeography in the Baishugou section


6 结论

通过柴东尕海南山南坡柏树沟剖面上石炭统克鲁克组(C2k)细粒沉积岩元素地球化学测试结果分析了欧南凹陷及周缘地区C2k构造背景、物质来源和沉积环境的特征及演化关系,得出结论如下:

(1)柏树沟露头C2k细粒沉积岩具有陆源碎屑和海洋生物成因硅质2种物质来源。陆源碎屑物质来源于露头南部柴北缘加里东构造带的酸—中性侵入岩,可能夹杂极少量再循环沉积岩风化产物;C2k泥页岩中普遍含“过量硅”,经证实为生物成因硅质,溶解硅的供给与露头北部宗务隆海槽枕状玄武岩的喷发和低温蚀变有关,经海底洋流上升为硅质浮游生物群落提供丰富营养。

(2)C2k沉积时期,欧南凹陷是阿尼玛卿洋壳向北俯冲控制的主动大陆边缘活动背景之下弧后裂陷盆地的组成部分,柏树沟露头南部的柴北缘构造带发育加里东期岛弧性质的花岗岩侵入体,露头北部的宗务隆构造带出现短暂的弧后小洋盆。

(3)C2k沉积时期处于全球范围晚古生代冰期事件的第Ⅲ期,从柏树沟C2k剖面识别出3期间冰期升温事件(A期、B期和C期),古气候温度的升高引发冰川型海侵,古水体随之加深,缺氧程度增强,海水的回灌和升温蒸发作用使盐度升高而咸化,其中升温B期的温度升高强度和海平面上升幅度均强于升温A期和C期,达到柏树沟地区C2k沉积层序的最大海泛面和水体弱还原状态。

(4)欧南凹陷C2k古生产力由柴北缘构造带方向供给的陆源高等植物有机质和宗务隆海槽方向提供以硅质生物为代表的海洋低等水生生物有机质所组成,升温B期的冰川型海侵作用最强烈,来自宗务隆海槽方向的海洋生物有机质输入强度达到最大,升温B期以外时段凹陷主要受柴北缘构造带方向陆源有机质的影响。

参考文献

付锁堂,关平,张道伟. 柴达木盆地近期勘探工作思考[J].天然气地球科学,2012,23(5): 813-819.

[本文引用: 2]

FU S T, GUAN P, ZHANG D W. Consideration about recent oil and gas exploration of Qaidam Basin[J]. Natural Gas Geoscience,2012,23(5):813-819.

[本文引用: 2]

马寅生,尹成明,刘成林,等.柴达木盆地石炭系油气资源调查评价进展[J].地球学报,2012,33(2):135-144.

MA Y S, YIN C M, LIU C L, et al. The progress of Carboniferous oil and gas investigation and assessment in Qaidam Basin[J].Acta Geoscientica Sinica,2012,33(2):135-144.

李宗星,彭博,马寅生,等.柴达木盆地石炭系油气调查最新进展[J].中国地质调查,2019,6(4):79-87.

[本文引用: 2]

LI Z X, PENG B, MA Y S, et al. Progress of Carboniferous oil and gas survey in Qaidam Basin[J]. Geological Survey of China,2019,6(4):79-87.

[本文引用: 2]

魏小洁,马寅生,李宗星,等.柴达木盆地北缘上石炭统碎屑岩—碳酸盐岩高频转换过程及驱动机制[J]. 古地理学报,2018,20(3):409-422.

[本文引用: 3]

WEI X J, MA Y S, LI Z X, et al. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous,northern Qaidam Basin[J].Journal of Palaeogeography, 2018,20(3):409-422.

[本文引用: 3]

刘世明,唐书恒,霍婷,等.柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8):1069-1081.

[本文引用: 3]

LIU S M, TANG S H, HUO T, et al. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin[J]. Natural Gas Geoscience, 2020,31(8):1069-1081.

[本文引用: 3]

李陈,文志刚,徐耀辉,等.柴达木盆地石炭系烃源岩评价[J].天然气地球科学,2011,22(5):854-859.

[本文引用: 2]

LI C, WEN Z G, XU Y H, et al. Evaluation of Carboniferous source rocks in Qaidam Basin[J]. Natural Gas Geoscience,2011,22(5):854-859.

[本文引用: 2]

文志刚,王正允,何幼斌,等.柴达木盆地北缘上石炭统烃源岩评价[J].天然气地球科学,2004,15(2):125-127.

[本文引用: 2]

WEN Z G,WANG Z Y,HE Y B,et al.Evaluation on Upper Car-boniferous hydrocarbon source rock in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2004,15(2):125-127.

[本文引用: 2]

孙娇鹏,尹成明,陈世悦,等.柴达木盆地北缘晚石炭世构造环境及物源——以石浅1井为例[J].地质通报, 2016,35(Z1):302-311.

[本文引用: 1]

SUN J P, YIN C M, CHEN S Y, et al. An analysis of Late Carboniferous sedimentary tectonic setting and provenance of North Qaidam area: Evidence from Well Shiqian 1[J].Geological Bulletin of China,2016, 35(Z1):302-311.

[本文引用: 1]

何川,黄海平,曹军,等.柴达木盆地石灰沟地区克鲁克组烃源岩分子地球化学表征[J].西安石油大学学报(自然科学版),2019,34(3):1-9.

[本文引用: 2]

HE C, HUANG H P, CAO J, et al. Molecular geochemical characterization of source rocks in Carboniferous Keluke Formation,Shihuigou area, Qaidam Basin[J]. Journal of Xi’an Shi-you University(Natural Science Edition),2019,34(3):1-9.

[本文引用: 2]

WANG G C, SUN M Z, GAO S F, et al. The origin, type and hydrocarbon generation potential of organic matter in a marine-continental transitional facies shale succession(Qaidam Basin, China)[J]. Scientific Reports, 2018,8(1):6568.

[本文引用: 1]

杨兵,夏浩东,杨欣杰,等. 晚古生代冰期研究进展[J].地质科技情报,2016,35(2):140-151.

[本文引用: 2]

YANG B, XIA H D, YANG X J, et al. Late Paleozoic ice age:Review of recent progress[J]. Geological Science and Te-chnology Information,2016,35(2):140-151.

[本文引用: 2]

QIE W K, ALGEO T J, LUO G M, et al. Global events of the Late Paleozoic (Early Devonian to Middle Permian): A review[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,531A:109259.

[本文引用: 1]

青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社,1991.

[本文引用: 1]

Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province[M]. Beijing: Geological Publishing House,1991.

[本文引用: 1]

刘奎,李宗星,施小斌,等.柴达木盆地东部晚海西—印支期剥蚀量与隆升历史——多种古温标与沉积学证据的制约[J].地球物理学报,2020,63(4):1403-1421.

[本文引用: 1]

LIU K, LI Z X, SHI X B, et al. Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin: Constraints from multiple thermometric indicators and sedimentary evidences[J]. Chinese Journal of Geophysics,2020,63(4):1403-1421.

[本文引用: 1]

马帅,陈世悦,孙娇鹏,等.柴达木盆地北缘早古生代沉积—构造事件耦合关系[J].沉积学报, 2019,37(4):674-689.

MA S, CHEN S Y, SUN J P, et al. The coupling relationship between Early Paleozoic sedimentary and tectonic events at the northern margin of the Qaidam Basin[J]. Acta Sedimentologica Sinica,2019,37(4):674-689.

CAO Y, SUN Z M, LI H B, et al. New Early and Late Carboniferous paleomagnetic results from the Qaidam Block, NW China: Implications for the paleogeography of Central Asia[J].Tectonophysics,2017,717:242-252.

孙娇鹏,陈世悦,刘成林,等.柴达木盆地东北部晚古生代盆地构造环境:来自碎屑岩地球化学的证据[J].地学前缘,2016,23(5):45-55.

[本文引用: 1]

SUN J P, CHEN S Y, LIU C L, et al. Tectonic setting of northeastern Qaidam Basin and its evolution during the Late Paleozoic: Evidence from geochemical characteristics of detrital rock[J].Earth Science Frontiers, 2016,23(5):45-55.

[本文引用: 1]

代昆,刘成林,肖敦清,等.柴达木盆地欧龙布鲁克地区构造演化研究[J].地学前缘,2016,23(5):33-44.

[本文引用: 1]

DAI K, LIU C L, XIAO D Q, et al. The tectonic deformation and evolution of the Olongbluke area in eastern Qaidam Basin[J].Earth Science Frontiers,2016,23(5): 33-44.

[本文引用: 1]

陈世悦,毕明威,孙娇鹏,等.柴北缘上古生界混合沉积特征及控制因素[J].地质通报,2016,35(Z1):282-292.

[本文引用: 1]

CHEN S Y, BI M W, SUN J P, et al. Mixed sedimentary characteristics and controlling factors of Upper Paleozoic Group in northern Qaidam Basin[J].Geological Bulletin of China,2016,35(Z1):282-292.

[本文引用: 1]

中国国家标准化管理委员会. GB/T 14505—2010 岩石和矿石化学分析方法总则及一般规定[S].北京:中国标准出版社,2010.

[本文引用: 1]

China National Standardizing Committee. GB/T 14505-2010 General Rules and Regulations for Chemical Analysis of Rocks and Ores[S].Beijing: Standards Press of China,2010.

[本文引用: 1]

中国国家标准化管理委员会. GB/T 14506.29—2010 硅酸盐岩石化学分析方法——第29部分:稀土等22个元素量测定[S]. 北京: 中国标准出版社, 2010.

China National Standardizing Committee. GB/T 14506.29-2010 Methods for Chemical Analysis of Silicate Rocks: Part 29: Determination of 22 elements including Rare Earth Elements[S]. Beijing: Standards Press of China, 2010.

中国国家标准化管理委员会. GB/T 14506.30—2010 硅酸盐岩石化学分析方法——第30部分:44个元素量测定[S]. 北京: 中国标准出版社, 2010.

[本文引用: 1]

China National Standardizing Committee.GB/T 14506.30-2010 Methods for Chemical Analysis of Silicate Rocks: Part 30: Determination of 44 Elements[S].Beijing:Standards Press of China, 2010.

[本文引用: 1]

TAYLOR S R, MCLENNAN S M. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society of London, Series A (Mathematical and Physical Sciences),1981,301(1461):381-399.

[本文引用: 1]

GROMET L P, HASKIN L A, KOROTEV R L, et al. The “North American shale composite”:Its compilation, major and trace element characteristics[J].Geochimica et Cosmochimica Acta,1984,48(12):2469-2482.

[本文引用: 1]

TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M].Oxford: Blackwell,1985.

[本文引用: 3]

CHEN H F, YEH P Y, SONG S R, et al. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia[J]. Journal of Asian Earth Sciences,2013,73:31-38.

[本文引用: 2]

ZABEL M,SCHNEIDER R R,WAGNER T,et al. Late Quaternary climate changes in central Africa as inferred from terrigenous input to the Niger Fan[J]. Quaternary Research,2001,56(2):207-217.

[本文引用: 1]

ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology,2009,268(3):211-225.

[本文引用: 3]

TARNEY J. 23. Petrology, mineralogy and geochemistry of the Falkland Plateau basement rocks, Site 300, Deep Sea Drilling Project[M]//BARKER P F, DALZIEL I W D. Initial Reports of the Deep Sea Drilling Project. Washington D C, U.S.: Government Printing Office,1976:893-921.

[本文引用: 2]

ALLEGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38(1):1-25.

[本文引用: 2]

HAYASHI K, FUJISAWA H, HOLLAND H D, et al. Geochemistry of ~1.9Ga sedimentary rocks from northeastern Labrador,Canada[J]. Geochimica et Cosmochimica Acta,1997,61(19):4115-4137.

[本文引用: 2]

SCHIEBER J. A combined petrographical: Geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana[J]. Geological Magazine,1992,129(2):223-237.

[本文引用: 2]

FRALICK P W, KRONBERG B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology,1997,113(1-2):111-124.

[本文引用: 1]

IKEDA M, TADA R, OZAKI K. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts[J]. Nature Communications,2017,8(1):15532.

[本文引用: 1]

SCHMITZ B, CHARISI S D, THOMPSON E I, et al. Barium, SiO2(excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event[J]. Terra Nova,1997,9(2):95-99.

[本文引用: 2]

王珊,曹颖辉,张亚金,等.塔里木盆地古城地区奥陶系鹰三段硅质岩地球化学特征及成因[J].天然气地球科学,2020,31(5):710-720.

[本文引用: 1]

WANG S, CAO Y H, ZHANG Y J, et al. Origin and geochemical characteristics of siliceous rocks in the third Member of Yingshan Formation in Gucheng area, Tarim Basin[J].Natural Gas Geoscience,2020,31(5):710-720.

[本文引用: 1]

MURRAY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J].Sedimentary Geology,1994,90(3):213-232.

[本文引用: 2]

ZHANG J, NOZAKI Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta,1996,60(23):4631-4644.

[本文引用: 1]

PIEPGRAS D J, JACOBSEN S B. The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column[J]. Geochimica et Cosmochimica Acta,1992,56(5):1851-1862.

[本文引用: 1]

郭安林,张国伟,强娟,等.青藏高原东北缘印支期宗务隆造山带[J].岩石学报,2009,25(1):1-12.

[本文引用: 2]

GUO A L,ZHANG G W,QIANG J,et al.Indosinian Zongwu-long orogenic belt on the northeastern margin of the Qinghai-Tibet plateau[J].Acta Petrologica Sinica,2009,25(1):1-12.

[本文引用: 2]

TREGUER P, NELSON D M, VAN BENNEKOM A J, et al. The silica balance in the world ocean: A reestimate[J].Science,1995,268(5209):375-379.

[本文引用: 1]

MCLENNAN S M, TAYLOR S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J].The Journal of Geology,1991,99(1):1-21.

[本文引用: 1]

BHATIA M R. Plate tectonics and geochemical composition of sandstones[J].The Journal of Geology,1983,91(6):611-627.

MURRAY R W, BUCHHOLTZ TEN BRINK M R, JONES D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J].Geology,1990,18(3):268-271.

[本文引用: 1]

毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

[本文引用: 1]

MAO G Z, LIU C Y. Application of geochemistry in provenance and depositional setting analysis[J].Journal of Earth Sciences and Environment,2011,33(4):337-348.

[本文引用: 1]

ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O Ratio[J]. The Journal of Geology,1986,94(5):635-650.

[本文引用: 2]

FLOYD P A, LEVERIDGE B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society,1987,144(4):531-542.

[本文引用: 1]

FENG R, KERRICH R. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting[J].Geochimica et Cosmochimica Acta,1990,54(4):1061-1081.

[本文引用: 1]

BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contributions to Mineralogy and Petrology,1986,92(2):181-193.

[本文引用: 1]

MCLENNAN S M.Weathering and global denudation[J]. The Journal of Geology,1993,101(2):295-303.

[本文引用: 1]

CAO J, WU M, CHEN Y, et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J].Geochemistry,2012,72(3):245-252.

[本文引用: 2]

VOSOUGHI MORADI A, SARI A, AKKAYA P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting[J]. Sedimentary Geology,2016,341(15):289-303.

[本文引用: 1]

WEI W, ALGEO T. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta,2020,287:341-366.

[本文引用: 1]

ZHOU C Y, ZHANG Q Y, HU S X, et al. Geochemical records of paleoenvironment associated with the Middle Triassic Luoping Biota, Yunnan, Southwest China[J].Journal of Earth Science,2010,21(1):225-227.

[本文引用: 1]

郑一丁, 雷裕红, 张立强, 等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学,2015,26(7):1395-1404.

[本文引用: 1]

ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleosedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J].Natural Gas Geoscience,2015,26(7):1395-1404.

[本文引用: 1]

OLDE K, JARVIS I, ULICNY D, et al. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2015,435:222-243.

[本文引用: 1]

解兴伟,袁华茂,宋金明,等.海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J].地质论评, 2019,65(3):671-688.

[本文引用: 1]

XIE X W,YUAN H M,SONG J M, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of wa-ter environment[J].Geological Review,2019,65(3):671-688.

[本文引用: 1]

WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta,1987,51(3):631-644.

[本文引用: 1]

许伟,孙知明,裴军令,等.青藏高原北部柴达木块体晚二叠世古地磁结果及其构造意义[J].岩石学报, 2011,27(11):3479-3486.

[本文引用: 1]

XU W, SUN Z M, PEI J L, et al. New Late Permian paleomagnetic results from Qaidam block and tectonic implications[J].Acta Petrologica Sinica,2011,27(11):3479-3486.

[本文引用: 1]

WEHRLI B, STUMM W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta,1989,53(1):69-77.

[本文引用: 1]

SCHLESINGER W H, KLEIN E M, VENGOSH A. Global biogeochemical cycle of vanadium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(52):E11092-E11100.

[本文引用: 1]

LEWAN M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984,48(11):2231-2238.

[本文引用: 1]

GUSTAFSSON J P. Vanadium geochemistry in the biogeosphere -speciation, solid-solution interactions, and ecotoxicity[J]. Applied Geochemistry,2019,102:1-25.

[本文引用: 1]

MORIN G, NOEL V, MENGUY N, et al. Nickel accelerates pyrite nucleation at ambient temperature[J]. Geochemical Perspectives Letters, 2017,5:6-11.

[本文引用: 1]

ARCHER C, VANCE D, MILNE A, et al. The oceanic biogeochemistry of nickel and its isotopes: New data from the south Atlantic and the southern ocean biogeochemical divide[J]. Earth and Planetary Science Letters, 2020,535:116118.

[本文引用: 1]

/