非常规天然气

鄂尔多斯盆地山西组海陆过渡相页岩与煤岩储层全尺度孔隙结构表征及主控因素分析

  • 朱星丞 , 1, 2, 3 ,
  • 路俊刚 , 1, 2, 3 ,
  • 李勇 1, 2, 3 ,
  • 何清波 4, 5 ,
  • 李树新 6 ,
  • 肖正录 1, 2, 3 ,
  • 蒋奇君 1, 2, 3 ,
  • 陈瑞杰 1, 2, 3 ,
  • 石雯心 1, 2, 3
展开
  • 1. 油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 2. 天然气地质四川省重点实验室,四川 成都 610500
  • 3. 西南石油大学地球科学与技术学院,四川 成都 610500
  • 4. 贵州省油气勘查开发工程研究院,贵州 贵阳 550000
  • 5. 自然资源部复杂构造区非常规天然气评价与开发重点实验室,贵州 贵阳 550000
  • 6. 中国石油煤层气有限责任公司,北京 100028
路俊刚(1980-),男,山东潍坊人,博士,教授,主要从事非常规油气地质研究及教学工作.E-mail:.

朱星丞(1999-),男,四川南充人,博士研究生,主要从事非常规油气地质研究.E-mail:.

收稿日期: 2024-12-10

  修回日期: 2025-01-09

  网络出版日期: 2025-02-10

Full-scale pore structure characterization and controlling mechanism of marine-continental transitional shale and coal reservoirs in the Shanxi Formation, Ordos Basin

  • Xingcheng ZHU , 1, 2, 3 ,
  • Jungang LU , 1, 2, 3 ,
  • Yong LI 1, 2, 3 ,
  • Qingbo HE 4, 5 ,
  • Shuxing LI 6 ,
  • Zhenglu XIAO 1, 2, 3 ,
  • Qijun JIANG 1, 2, 3 ,
  • Ruijie CHEN 1, 2, 3 ,
  • Wenxin SHI 1, 2, 3
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu 610500,China
  • 2. Natural Gas Geology Key Laboratories,Sichuan Province,Chengdu 610500,China
  • 3. School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
  • 4. Guizhou Engineering Research Institute of Oil & Gas Exploration and Development,Guiyang 550000,China
  • 5. Key Laboratory of Unconventional Natural Gas Evaluation and Development in Complex Tectonic Areas,Ministry of Natural Resources,Guiyang 550000,China
  • 6. PetroChina Coalbed Methane Company Limited,Beijing 100028,China

Received date: 2024-12-10

  Revised date: 2025-01-09

  Online published: 2025-02-10

Supported by

The National Natural Science Foundation of China(41872165)

the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX0501)

摘要

海陆过渡相页岩与煤岩的储层孔隙结构差异性对非常规油气勘探开发具有重要意义。以鄂尔多斯盆地大宁—吉县地区山西组山2 3亚段为例,系统开展了页岩与煤岩储层全尺度孔隙结构的表征与对比分析。利用FE⁃SEM、高压压汞、N₂及CO₂吸附实验,结合TOC与XRD分析,探讨了有机质与无机矿物对不同尺度孔隙结构的控制作用。研究结果表明:页岩TOC平均值为4.69%,有机孔、无机孔及微裂缝均发育,其中,有机孔最常见,多以密集、成群发育;煤岩TOC平均值为74.22%,有机孔是最主要的孔隙类型,直径显著大于海陆过渡相页岩和海相页岩。页岩的微孔、介孔和宏孔对总孔体积均有贡献,有机质是微孔发育的物质基础,黏土矿物的相互转化对介孔和宏孔发育具有重要促进作用;煤岩中以微孔和宏孔为主,有机质是影响孔隙发育的最主要因素,且较高的TOC承载了直径更大有机孔。研究从微观尺度全面揭示了海陆过渡相页岩与煤岩储层孔隙结构的异同,为非常规油气资源的精准评价与开发提供了科学依据。

本文引用格式

朱星丞 , 路俊刚 , 李勇 , 何清波 , 李树新 , 肖正录 , 蒋奇君 , 陈瑞杰 , 石雯心 . 鄂尔多斯盆地山西组海陆过渡相页岩与煤岩储层全尺度孔隙结构表征及主控因素分析[J]. 天然气地球科学, 2025 , 36(7) : 1291 -1306 . DOI: 10.11764/j.issn.1672-1926.2025.01.003

Abstract

Pore structure heterogeneity between marine-continental transitional shale and coal reservoirs fundamentally plays a crucial role in unconventional oil and gas exploration and development. This research uses the Shan2 3 sub-member in the Danning-Jixian area of the Ordos Basin as a case study, systematically conducting characterization and comparative analysis of the full-scale pore structure of shale and coal reservoirs. Using field-emission scanning electron microscopy (FE-SEM), mercury intrusion porosimetry (MIP), N₂ and CO₂ adsorption experiments, along with TOC and XRD analysis, the study investigates the control of organic matter and inorganic minerals on the pore structures at different scales. The results show that: the average TOC value of the shale is 4.69%, with the development of organic matter pores, inorganic pores, and microfractures, among which organic matter pores are the most common, often densely and clustered; the average TOC value of the coal is 74.22%, with organic matter pores being the dominant pore type, and the pore diameter is significantly larger than that of marine-continental transitional shale and marine shale. In the shale, the micropores, mesopores, and macropores all contribute to the total pore volume, with organic matter serving as the material foundation for micropore development, and the clay mineral diagenesis playing an important role in promoting mesopore and macropore development. In the coal, micropores and macropores are the main types, with organic matter being the most significant factor influencing pore development, and a higher TOC supporting the development of larger organic pores. This study comprehensively reveals the similarities and differences in the pore structures of marine-continental transitional shale and coal reservoirs at the micro scale, providing a scientific basis for the precise evaluation and development of unconventional oil and gas resources.

0 引言

非常规油气具有分布面积广、资源潜力大的特征1-3,海陆过渡相页岩气和煤岩气作为我国非常规天然气勘探开发的新领域,总地质资源量约为19.8×1012 m3,其中技术可采资源约为5.1×1012 m3,约占前者的25%4-5。鄂尔多斯盆地上古生界山西组广泛发育煤系页岩与煤岩,具有累计厚度大、平面分布广、资源潜力大的特点6。近年来,在大宁—吉县区块页岩气和煤岩气均获得突破:5口直井在山西组页岩段压裂试采获得工业气流,最高无阻流量可达1.0×104 m3/d5,水平井JP1H井18个月累计产气1 936×104 m3,稳定日产气量为3.3×104 m3 [7-8;JS6-7井在煤岩段获得日产10.1×104 m3的高产工业气流9。因此,勘探开发中应综合考虑鄂尔多斯盆地上古生界海陆过渡相页岩与煤岩的地质特征。
天然气赋存形式包括孔隙和裂缝中的自由气、有机质和黏土矿物表面的吸附气,以及油、水或干酪根中的溶解气10-11。这种存储与页岩、煤岩储层中复杂的纳米级孔隙系统密切相关,控制着气体的储存—流动行为,最终影响着烃类的储存能力以及气井产量12-13。目前,已有许多测试手段被用以表征页岩与煤岩孔隙结构,包括氩离子抛光扫描电镜、CT扫描等直接法,以及高压压汞、低温气体吸附等间接法。前者可定性地观察孔隙的形状、大小和分布,后者可定量地表征孔隙体积、比表面积等结构参数14-16。但由于页岩与煤岩孔隙结构的非均质性强,孔径范围跨度大,需多方法联合表征页岩全孔径结构。前人针对五峰组—龙马溪组等海相页岩储层开展了多实验联合表征的方法揭示了纳米孔隙系统的特征17-18,但在海陆过渡相储层研究中类似的工作较少。与海相页岩气相比,海陆过渡相页岩气具有受制于复杂的水动力条件,多体系物源影响,具有砂泥层频繁互层,页岩与煤岩在垂向上分布非均质性较强的特点,这严重制约了海陆过渡相页岩气的勘探开发进程19-20
在本文研究中,笔者选取鄂尔多斯盆地山西组煤系页岩与煤岩为研究对象,对大宁—吉县地区DJ3-4、DJ51、DJ17-1X5井山2 3亚段进行等距密集采样,收集页岩样品32块,煤岩样品6块,取样密度为2 m/块。针对所有样品均开展场发射扫描电镜(FE-SEM)、N2和CO2吸附、高压压汞等方法联合表征页岩与煤岩储层的全孔径结构,采用FHH(Frenkel Halsey Hill)计算孔隙分形特征,进而结合TOC和XRD分析探讨不同尺度孔隙发育的控制因素,以期为海陆过渡相页岩气、煤岩气勘探评价提供科学依据和理论基础。

1 区域地质概况

鄂尔多斯盆地位于中国中北部,其内部构造稳定,断层不发育,整体具有南北隆升、西冲东抬的构造格局21-22。盆地可划分为6个一级构造单元:西缘逆冲带、西部天环坳陷、中部伊陕斜坡、东部晋西挠褶带、南部渭北隆起和北部伊盟隆起23-24图1(a)]。作为中国第一大油气生产盆地,鄂尔多斯盆地天然气累计探明储量6.86×1012 m3[25-26,相继在古生界探明了苏里格、靖边、榆林、子洲、神木等大气田27-28
图1 研究区地理位置及地层综合柱状图(据文献[35-36]修改)

Fig.1 Geographic location of the study area and the composite stratigraphic column (modified from Refs.[35-36])

鄂尔多斯盆地二叠系自下而上发育太原组、山西组、石盒子组和石千峰组[图1(b)]。受海西期构造运动影响,华北地台整体隆升,海水从盆地东、西两侧逐渐后退,鄂尔多斯盆地水体变化频繁,形成浅海—三角洲前缘—滨浅湖相多期沉积旋回,沉积了多套海陆过渡相富有机质页岩29-30。研究区位于盆地东南部,山2 3亚段页岩和煤岩均发育,页岩累计厚度可达20~40 m,煤岩厚度约为3~5 m(图1),是目前鄂尔多斯盆地海陆过渡相页岩气、煤岩气勘探开发的重点目标层位之一31-32

2 页岩与煤岩的储层差异特征

2.1 有机地球化学特征

TOC测定与岩石热解分析实验显示,大宁—吉县地区山2 3亚段页岩的TOC值在0.56%~28.5%之间,平均值为4.96%(表1),其中有63%的样品大于2.0%,属于最好烃源岩的范畴(图2)。显微组分鉴定结果显示,页岩中镜质组>壳质组>惰质组>腐泥组,平均含量分别为38.3%、27.1%、19.2%和15.3%,整体上属于Ⅲ型有机质,极少数可达到Ⅱ2型[图3(a)]。
表1 大宁—吉县地区山2 3亚段页岩与煤岩地球化学特征

Table 1 Geochemical characteristics of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

岩石类型 有机质丰度 有机质类型 成熟度
TOC/(%) S 1+S 2)/(mg/g) 腐泥组/% 壳质组/% 镜质组/% 惰质组/% 类型指数 类型 R O/% 演化阶段
页岩 0.56 ~ 28.5 4.96 0.12 ~ 7.77 0.77 8 ~ 24 15.3 15 ~ 44 27.1 20 ~ 48 38.3 12 ~ 33 19.2 - 46.8 ~ 15.0 - 19.12 Ⅲ型 2.32 ~ 3.07 2.66

过成熟

阶段

煤岩 0.48 ~ 86.1 74.22 0.60 ~ 8.66 4.35 5 ~ 7 6 8 ~ 12 9.7 39 ~ 54 46 27 ~ 48 35 - 68.3 ~ - 54.5 - 60.4 Ⅲ型 2.56 ~ 2.77 2.65

过成熟

阶段

注: 0.56 ~ 28.5 4.96= 最小 最大 平均

图2 大宁—吉县地区山2 3亚段页岩与煤岩有机质丰度特征

Fig.2 Organic matter abundance characteristics of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

图3 大宁—吉县地区山2 3亚段页岩(a)与煤岩(b)显微组分特征

Fig.3 Microscopic composition characteristics of shale(a) and coal(b) in the Shan2 3 sub-member of the Daning-Jixian area

煤岩的TOC值在48.7%~86.1%之间,平均值为74.22%。煤岩的显微组分中镜质组>惰质组>壳质组>腐泥组,平均含量分别为46.5%、37.5%、10%和6%,均属于Ⅲ型有机质。与页岩相比,腐泥组和壳质组含量明显较低,镜质组含量较高[图3(b)]。页岩与煤岩R O值均大于2.0%,平均值为2.66%,属于过成熟阶段,有利于有机质热解生气。
大宁—吉县地区山2 3亚段的页岩与煤岩均以Ⅲ型干酪根为主,与海陆过渡相Ⅰ—Ⅱ型有机质相比,更不利于有机孔的形成33-34。但页岩显微组分中腐泥组和壳质组含量相对较高,而煤岩以镜质组和惰质组为主,相比之下页岩更易形成有机孔。

2.2 矿物组成特征

通过X衍射技术对矿物进行全岩以及黏土矿物定量分析发现,页岩组成以石英和黏土矿物为主,存在少量黄铁矿、碳酸盐矿物(表2图4)。石英含量在16%~65%之间,平均为46.1%,黏土矿物含量在12%~76%之间,平均为38.25%,其中高岭石含量最高。
表2 大宁—吉县地区山2 3亚段页岩与煤岩矿物含量统计

Table 2 Mineral content of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

岩石类型 黏土矿物/% 脆性矿物/%

炭质

/%

伊/蒙混层 伊利石 绿泥石 高岭石 含量占比 石英 长石 黄铁矿 方解石 菱铁矿
页岩 6.1 ~ 34.6 15.1 7.3 ~ 42.6 18.9 2.5 ~ 32.6 10.9 25.5 ~ 89.7 55.1 12 ~ 57 38.3 16 ~ 65 46.1 1 ~ 7 2.8 1 ~ 35 5.9 2 ~ 23 11.6 3 ~ 14 4.4 /
煤岩 37.5 ~ 86.4 54.4 / / 13.6 ~ 62.5 45.6 32 ~ 56 45 4 ~ 13 7.3 / / 1 ~ 8 2.6 / 40 ~ 55 46

注: 6.1 ~ 34.6 15.1 = 最小 最大 平均

图4 典型海相页岩、海陆过渡相与煤岩矿物组分特征(龙潭组、大隆组数据引自文献[38])

Fig.4 Characteristics of mineral composition in marine shale, transitional shale, and coal(data for the Longtan and Dalong formations are cited from Ref.[38])

煤岩中矿物组成与页岩差距较大,以炭质和黏土矿物为主,存在少量石英、方解石(表2图4)。炭质在40%~55%之间,平均为46%,黏土矿物含量在32%~56%之间,平均为44%,其中伊/蒙混层与高岭石含量最高。
整体上,山西组不同深度段页岩和煤岩样品的矿物组分含量差异较大,指示了海陆过渡相页岩具有较强的非均质性。此外,与海相页岩相比,海陆过渡相页岩与煤岩脆性矿物含量较低3437

3 页岩与煤岩的微观孔隙结构差异

3.1 储集空间差异

页岩与煤岩的微观孔缝形态复杂,在扫描电镜观察到大量微米—纳米级结构(图5)。页岩孔缝可依据发育形态与成因划分为有机孔、无机孔和微裂缝3类。有机孔是页岩中最常见的孔隙,以单个孔隙形态,且以圆形、椭圆形和不规则多边形为主,直径在10 nm~1 μm之间,存在孤立状[图5(a)]和蜂窝状[图5(b)]2种聚集形态。
图5 大宁—吉县地区山2 3亚段页岩与煤岩扫描电镜照片

(a)DJ3-4井,2 143.5 m,山2 3亚段,页岩,有机孔孤立状分布;(b)DJ51井,2 275.68 m,山2 3亚段,页岩,有机孔蜂窝状聚集;(c)DJ3-4井,2 124.1 m,山2 3亚段,页岩,溶蚀孔;(d)DJ51井,2 267.7 m,山2 3亚段,页岩,残余粒间孔;(e)DJ3-4井,2 151.01 m,山2 3亚段,页岩,黏土矿物层间缝;(f)DJ51井,2 291.65 m,山2 3亚段,页岩,黄铁矿晶间孔;(g)DJ51井,2 294.9 m,山2 3亚段,页岩,构造微裂缝;(h)DJ51井,2 267.7 m,山2 3亚段,页岩,有机质收缩缝;(i)DJ51井,2 264.85 m,山2 3亚段,煤岩,气孔呈狭缝状定向排列;(j)DJ51井,2 264.85 m,山2 3亚段,煤岩,残余粒间孔;(k)DJ3-4井,2 280.93 m,山2 3亚段,煤岩,割理;(l)DJ3-4井,2 280.93 m,山2 3亚段,煤岩,微裂缝

Fig.5 Scanning electron microscope (SEM) images of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

无机孔包括溶蚀孔、粒间残余孔、黏土矿物层间孔以及黄铁矿晶间孔。溶蚀孔通常是孤立的,主要发育在石英矿物中,呈椭圆形或坑形,直径一般小于200 nm[图5(c)]。粒间残余孔主要存在于石英等刚性矿物之间,在压实作用下通常呈裂隙状或不规则多边形,直径在20~500 nm之间[图5(d)]。黏土矿物层间孔形成与成岩作用过程中黏土矿物转化、黏土体积减小有关,后在压实作用下孔隙闭合或形成细长弯曲的线条状孔隙[图5(e)]。部分页岩中黄铁矿含量较高,多个晶体不规则堆积形成草莓状集合体,形成了大量晶间孔构成网格状孔隙网络,连通性较好,直径在100~300 nm之间[图5(f)]。
山西组页岩中可见微裂缝,但分布密度不大,根据成因可划分为构造应力缝和成岩收缩缝。构造应力缝通常沿着矿物颗粒的表面或穿过矿物颗粒或有机物[图5(g)],可有效地连接微观孔隙结构。成岩收缩缝通常分布在有机质边缘附近,由有机质在生烃演化过程中向烃类物质转化、体积不断地收缩形成[图5(h)]。
与页岩相比,煤岩主要为炭质和黏土组成,石英、黄铁矿等刚性矿物含量较低,大部分孔隙在强压实作用下闭合,可观察到气孔、残余粒间孔、割理与微裂缝4类。气孔是有机质孔的一种,也是山西组煤岩中最主要的孔隙空间,为高—过成熟阶段下生气形成。电镜下可见气孔在压实作用下呈长直的狭缝状定向排列,宽200~500 nm,长1~5 μm[图5(i)]。煤岩中的残余粒间孔[图5(j)]和微裂缝[图5(k)]与页岩中的同类孔缝形态相似,但数量较少。与页岩不同的是,煤岩局部可见割理发育[图5(l)]。

3.2 页岩与煤岩的孔隙定量表征

3.2.1 孔隙结构差异

国际纯粹与应用化学联合会(IUPAC)将页岩孔隙分为微孔(小于2 nm)、介孔(2~50 nm)和宏孔(大于50 nm)634。采用高压压汞法可以准确反映样品中大于50 nm的宏孔结构特征。页岩和煤岩的进汞曲线均具有三段式的分布特征[图6(a),图6(b)],在低压段(P<0.4 MPa)和高压段(P>30 MPa)进汞量快速增大,在中等压力段(0.4 MPa<P<30 MPa)进汞量较少,表明样品中数百微米的孔缝和数十纳米以下的微观孔隙更为发育。页岩的进汞与退汞曲线呈现明显的“滞后环”,表明样品中存在较多的半封闭孔隙,孔隙连通性较差[图6(a)];而煤岩的进汞、退汞曲线基本重合,无明显“滞后环”,表明孔隙连通性较好[图6(b)]。
图6 山2 3亚段页岩与煤岩高压压汞(a、b)、氮气吸附(c、d)和二氧化碳吸附(e、f)曲线

Fig.6 High-pressure mercury intrusion (a, b), N2 adsorption (c, d), and CO2 adsorption (e, f) curves of shale and coal in the Shan2 3 sub-member

采用N2吸附法可以准确反映孔径在2~50 nm之间的介孔结构特征。根据IUPAC,页岩样品具有IV型(a)等温线的特征[图6(c)],表明页岩发育介孔结构,且孔径大于临界宽度,吸附质气体发生毛细凝聚现象,形成明显滞后环38-39。页岩的滞后环为H3型和H4型,表明孔隙以狭缝状、平板板状、墨水瓶状、锥形孔等为主。而煤岩样品具有Ⅱ型和Ⅲ型等温线特征[图6(d)],表明介孔较不发育。煤岩的滞后环较小,表明孔隙以两端开口的圆柱形孔和四端开口平板状孔为主。
采用CO2吸附法可以准确反映孔径在小于2 nm的微孔结构特征。研究区山西组页岩和煤岩的CO2吸附等温线特征相似,均为Ⅰ型吸附等温线,具有低压段吸附量迅速增加,高压段逐渐平缓的特征[图6(e),图6(f)]。这种模式表明页岩和煤岩样品中均存在大量微孔。结合吸附量特征,可明显看出随着TOC的增加,最大吸附量明显增加,这表明TOC对微孔存在显著影响。

3.2.2 全尺度孔隙结构表征

页岩样品具有多峰特征[图7(a)—图7(f)],微孔、介孔和宏孔对总孔孔隙体积均存在贡献(图8)。微孔占总孔体积的12.57%~66.35%,平均为35.19%;介孔占总孔体积的1.05%~54.83%,平均为29.92%;宏孔占总孔体积的16.26%~69.45%,平均34.89%,孔径一般大于50 μm。不同尺度孔径的存在构成了页岩的总孔体积,反映了页岩孔隙结构的复杂性。相比之下,煤的微孔和宏孔是总孔体积的主要贡献者[图7(g)—图7(i)]。微孔占总孔体积的比例为29.65%~54.00%,平均为45.42%;介孔对总孔体积的贡献很小,仅占0.16%~5.73%,平均为1.61%;宏孔占总孔体积的44.43%~70.19%,平均为52.98%。无论是页岩还是煤岩,直径为100 nm~50 μm的孔隙都不发育,大于50 μm的孔隙和微裂缝是宏孔的主要贡献者。
图7 大宁—吉县地区山2 3亚段页岩与煤岩孔体积全孔径分布特征

Fig.7 Pore volume and full pore size distribution characteristics of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

图8 大宁—吉县地区山2 3亚段页岩与煤岩不同尺度孔隙孔体积和相对比例

Fig.8 Pore volume and relative proportion of different scale pores in shale and coal of the Shan2 3 sub-member in the Daning-Jixian area

从全尺度比表面积分布来看,页岩中仅宏孔和介孔存在贡献[图9(a)—图9(f)],分别占总比表面积的80.08%~99.86%(平均为89.51%)和0.10%~19.91%(平均为10.40%),宏孔可以忽略不计,仅占0.01%~0.52%(平均为0.09%)(图10)。煤岩中只有微孔对比表面积有贡献[图9(g)—图9(i)],占总比表面积的98.88%~99.93%(平均为99.69%);介孔为0.03%~1.06%(平均为0.25%);宏孔为0.04%~0.06%(平均为0.05%)(图10)。
图9 大宁—吉县地区山2 3亚段页岩与煤岩比表面积全孔径分布特征

Fig.9 Surface area and full pore size distribution characteristics of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

图10 大宁—吉县地区山2 3亚段页岩与煤岩不同尺度孔隙比表面积和相对比例

Fig.10 Surface area and relative proportion of different scale pores in shale and coal of the Shan2 3 sub-member in the Daning-Jixian area

3.3 孔隙结构的分形非均质性特征

页岩和煤岩孔隙结构的复杂性和非均质性与吸附行为有关,可以通过分形维数对孔隙结构的复杂程度进行表征。分形维数(D)一般在2 ~ 3之间,指示了孔隙表面从光滑到粗糙、从简单到复杂的转变40-41
N2吸附实验对介孔的表征结果显示,页岩与煤岩的N2吸附—解吸等温线均在相对压力约0.5时显示出一个滞后环,这归因于高于和低于该阈值的不同吸附机制。因此对高压段(P/P 0>0.5)的分形维数D 1和低压段(P/P 0<0.5)的分形维数D 2进行计算,分别代表了大孔隙和小孔隙的复杂性(图11)。
图11 基于N2吸附实验的分形特征拟合关系

Fig.11 Fitting relationship of fractal characteristics based on N2 adsorption experiments

结果显示(表3),研究区页岩的D 1平均值为2.60,D 2平均值为2.62,表明页岩中大孔隙的复杂程度与小孔隙接近。而煤岩的D1平均值为2.77,煤岩的D 2平均值为2.40,表明煤岩的小孔隙复杂程度大于煤岩的大孔隙和页岩孔隙。因此,煤岩的孔隙系统更复杂且不规则,尤其是在宏观尺度孔隙,而页岩孔隙系统更均衡。
表3 大宁—吉县地区山2 3亚段页岩与煤岩分形维数特征统计

Table 3 Characteristics of fractal dimension of shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

类型 TOC/% D 1P/P 0<0.5) D 2P/P 0>0.5)
页岩 0.78 ~ 26.50 6.56 ( 32 ) 2.45 ~ 2.66 6.60 ( 32 ) 2.35 ~ 2.81 2.62 ( 32 )
煤岩 48.70 ~ 88.03 6.65 ( 6 ) 2.46 ~ 2.97 2.77 ( 6 ) 2.29 ~ 2.48 2.40 ( 6 )

注: 0.78 ~ 26.50 6.56 ( 32 ) = 最小 最大 平均 ( 样品 )

4 页岩与煤岩储层孔隙结构的控制因素

4.1 有机质对孔隙发育的影响

有机质不仅是油气生成的必要条件,也对储层中纳米级孔隙的发育有重要影响42图12显示,页岩与煤岩的微孔体积与TOC均呈明显正相关关系,介孔体积与TOC均无明显关系,而宏孔中仅煤岩的体积与TOC存在较好相关性。热演化过程中有机质不断裂解,为孔隙形成提供了物质基础[图5(a),图5(b)]。但页岩中TOC较低,形成的有机孔直径较小,以微孔为主;而煤岩中TOC较高,有机质连片发育,可承载宏观尺度的有机孔的形成[图5(i)]。
图12 大宁—吉县地区山2 3亚段页岩与煤岩孔体积随TOC变化

(a)微孔体积;(b)介孔体积;(c)宏孔体积

Fig.12 Variation of pore volume with TOC in shale and coal of the Shan2 3 sub-member in the Daning-Jixian area

4.2 无机矿物对孔隙发育的影响

在以往的海相页岩储层研究中,认为石英和黏土矿物对储层的发育具有重要影响。石英可作为刚性矿物形成的格架防止孔隙坍塌,从而有效地保存原始孔隙度,并且有机质热演化生烃过程中容易遭受溶蚀,形成粒内孔隙43,黏土矿物则在成岩过程中发生转化,过程对无机孔存在贡献44
由于研究区山2 3亚段页岩与煤岩中TOC含量较高,且对孔隙体积存在较强影响,因此对孔隙体积进行归一化处理,并分别建立黏土和石英与不同尺度孔隙的孔体积关系。结果显示,黏土矿物对中—低有机质页岩(TOC<4%)的介孔和宏孔体积存在较大影响,富有机质页岩(TOC>4%)和煤岩中则无明显相关性[图13(a)—图13(c)]。这是由于热演化过程中,高岭石向伊利石等矿物转化,形成黏土相关孔缝45图5(e)],促进了介孔和宏孔的发育。
图13 大宁—吉县地区山2 3亚段页岩与煤岩孔体积随黏土矿物总量与高岭石含量变化

(a)、(d)微孔体积;(b)、(e)介孔体积;(c)、(f)宏孔体积

Fig.13 Variation of pore volume with clay mineral and kaolinite in shale and coal of the Shan2 3 sub-member in the Daning-Jixian area

在中—低有机质页岩中,石英含量与介孔、宏孔体积呈中等负相关[图14(a)—图14(c)]。这是由于研究区山西组地层最大埋深可达4 000 m,强压实作用下,矿物颗粒间残余粒间孔较少(图5),对孔隙结构的保存作用减弱;同时,石英与黏土矿物间存在“此消彼长”的关系(图15),过高的石英含量反而会减少黏土矿物对介孔、宏孔结构发育的贡献。
图14 大宁—吉县地区山2 3亚段页岩与煤岩孔体积随石英含量变化

(a)微孔体积;(b)介孔体积;(c)宏孔体积

Fig.14 Variation of pore volume with quartz content in shale and coal of the Shan2 3 sub-member in the Daning-Jixian area

图15 大宁—吉县地区山2 3亚段不同组分间含量变化

(a)高岭石含量与TOC关系;(b)石英含量与黏土矿物含量关系

Fig.15 Variation of content among different components in the Shan2 3 sub-member of the Daning-Jixian area

4.3 海陆过渡相页岩与煤岩孔隙差异发育模式

对于传统海相页岩来说,有机质孔是最主要的孔隙类型,微孔和介孔较发育(表4)。其孔隙结构比海陆过渡相页岩更发育,这是由于Ⅰ—Ⅱ型干酪根中腐泥组含量较高,比Ⅲ型干酪根更容易形成孔隙33。有机质和黏土含量与孔体积呈正相关,为孔隙发育提供物质基础。
表4 山西组海陆过渡相页岩、煤岩与典型海相页岩储层综合特征(部分数据引自文献[1538])

Table 4 Comprehensive characteristics of transitional shale, coal, and typical marine shale reservoirs in the Shanxi Formation (partial data are cited from Refs.[1538])

盆地 鄂尔多斯盆地 四川盆地
地层 二叠系山西组 二叠系山西组 二叠系大隆组 志留统龙马溪组
沉积环境 海陆过渡相 海陆过渡相 海相 海相
岩石类型 页岩 煤岩 页岩 页岩
有机地球化学特征 TOC/% 0.56 ~ 28.5 4.69 ( 32 ) 48.7 ~ 86.1 74.22 ( 6 ) 1.5 ~ 6.4 2.9 0.04 ~ 5.19 2.2
有机质类型 Ⅲ型 Ⅲ型 Ⅰ~Ⅱ型 Ⅰ~Ⅱ型
显微组分特征 壳质组、镜质组为主 镜质组、惰质组为主 腐泥组为主 腐泥组为主
矿物组分特征 硅酸盐含量/% 6.9 ~ 83.8 49.4 6.7 ~ 28.9 12.7 29.0 ~ 69.9 46.5 23.8 ~ 56.0 42.42
黏土含量/%

16.22~77.19

45.1

71.1~93.3

80.5

12.8~60.3

40.1

6.3~61.6

37.9

碳酸盐含量/%

0~15.1

2.33

0~14.3

9.3

4.8~36.8

13.8

3.5~44.8

18.0

孔隙结构特征 主要孔隙类型 有机孔和黏土矿物孔缝 有机孔 有机孔 有机孔
孔隙度/% 2.94 10.54 / 5.58
微孔体积占比/% 35 53 / 23
介孔体积占比/% 30 2 / 58
宏孔体积占比/% 35 45 / 19

注: 0.56 ~ 28.5 4.69 ( 32 ) = 最小 最大 平均 ( 样品 );“/”无数据

海陆过渡相地层中,页岩孔隙类型以有机孔和黏土矿物相关孔缝为主,微孔、介孔和宏孔均发育[图16(a)]。与海相页岩相比,海陆过渡相页岩中TOC对微孔发育影响更大,这是由于Ⅲ型干酪根裂解更利于形成直径较小的有机孔。在贫有机质页岩中,黏土对介孔、宏孔发育具有促进作用,这是因为高岭石、伊利石与伊/蒙混层间的相互转化有利于黏土矿物孔缝的形成。
图16 大宁—吉县地区山2 3亚段页岩与煤岩储集空间模式示意

(a)页岩;(b)煤岩

Fig.16 Schematic diagram of reservoir space model for shale and coal in the Shan2 3 sub-member of the Daning-Jixian area

对于煤岩而言,储层孔隙特征明显好于页岩(图17),孔隙类型以有机质孔为主导,微孔和宏孔均较发育,孔隙直径大,但发育密度比页岩较小[图16(b)]。这是由于煤岩TOC较高,有机质占到岩石体积的绝大部分,形成有机孔直径显著大于海相页岩和海陆过渡相页岩,在微孔和宏孔尺度均有发育。但需注意,虽然煤岩与页岩均为Ⅲ型有机质,但煤岩中镜质组、惰质组含量更高,更不利于孔隙形成,因此发育程度不如页岩密集。
图17 山西组海陆过渡相页岩和煤岩储层单井综合柱状图

Fig.17 Comprehensive well columnar of transitional shale and coal reservoirs in the Shanxi Formation

5 结论

(1)页岩TOC平均值为4.69%,显微组分以壳质组、镜质组为主,矿物组成中石英和黏土矿物较高,存在少量黄铁矿、碳酸盐矿物。煤岩TOC平均值为74.22%,显微组分以镜质组、惰质组为主,黏土矿物和炭质是最主要的组成成分。
(2)页岩中,有机孔、无机孔及微裂缝均发育,其中有机孔相对最常见;微孔、介孔和宏孔对总孔隙体积均有贡献,比表面积主要由微孔与介孔贡献;煤岩中,有机孔是最主要的孔隙类型,宏孔和微孔较发育,比表面积几乎完全由微孔贡献。
(3)对于页岩,有机质为微孔发育提供了物质基础,黏土矿物中的矿物转化对介孔和宏孔的发育产生正面影响。对于煤岩,TOC与微孔、宏孔均存在明显正相关,且较高的有机质含量承载了较大直径有机孔的形成。
[1]
杨魏,李勇,邱玉超,等.四川盆地简阳地区须四段致密砂岩气富集高产控制因素[J].成都理工大学学报(自然科学版),2024,51(6):897-912.

YANG W,LI Y,QIU Y C,et al.Controlling factors of tight san-dstone gas enrichment and high уield in the fourth member of the Xujiahe Formation in Jianyang area,Sichuan Basin[J].Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(6): 897-912.

[2]
蒋奇君,李勇,肖正录,等.川中地区大安寨段页岩热演化史及油气地质意义[J].新疆石油地质,2024,45(3):262-270.

JIANG Q J, LI Y, XIAO Z L, et al. Thermal evolution history of shale in Da’anzhai Member and its petroleum geological significance in central Sichuan Basin[J].Xinjiang Petroleum Ge-ology, 2024, 45(3): 262-270.

[3]
蒋奇君,李勇,刘向君,等.准噶尔盆地红车断裂带多源多期油气成藏控制因素及有利勘探方向[J].天然气地球科学,2023,34(5):807-820.

JIANG Q J,LI Y,LIU X J,et al. Controlling factors of multi-source and multi-stage complex hydrocarbon accumulation and favorable exploration area in the Hongche fault zone, Junggar Basin[J].Natural Gas Geoscience,2023,34(5):807-820.

[4]
郭旭升,王濡岳,申宝剑,等.中国页岩气地质特征、资源潜力与发展方向[J].石油勘探与开发,2025,52(1):15-28.

GUO X S,WANG R Y,SHEN B J,et al.Geological characteri-stics,resource potential, and development direction of shale gas in China[J].Petroleum Exploration and Development,2025,52(1):15-28.

[5]
焦方正,温声明,刘向君,等.鄂尔多斯盆地海陆过渡相页岩气勘探理论与技术研究新进展[J].天然气工业,2023,43(4):11-23.

JIAO F Z, WEN S M, LIU X J, et al. Research progress in exploration theory and technology of transitional shale gas in the Ordos Basin[J].Natural Gas Industry,2023,43(4):11-23.

[6]
蒋裕强,温声明,蔡光银,等.鄂尔多斯盆地海陆过渡相页岩岩性组合特征及页岩气勘探潜力[J].天然气工业,2023,43(4):62-75.

JIANG Y Q,WEN S M,CAI G Y,et al.Lithologic assemblage characteristics and shale gas exploration potential of transitional shale in the Ordos Basin[J].Natural Gas Industry,2023,43(4): 62-75.

[7]
罗力元,李勇,何清波,等.鄂尔多斯盆地东缘海陆过渡相页岩原位含气性评价及其地质应用[J].天然气地球科学,2024,35(12): 2215-2227.

LUO L Y,LI Y,HE Q B, et al. In-situ gas-bearing evaluation of marine-continental transitional shale in the eastern margin of Ordos Basin and its geological application[J].Natural Gas Geoscience, 2024, 35(12): 2215-2227.

[8]
邹才能,董大忠,熊伟,等.中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J].石油与天然气地质,2024,45(2):309-326.

ZOU C N, DONG D Z, XIONG W, et al. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays,sequences and new types in China[J].Oil & Gas Geology, 2024, 45(2): 309-326.

[9]
徐凤银,王成旺,熊先钺,等.深部(层)煤层气成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例[J].中国海上油气,2022,34(4):30-42.

XU F Y,WANG C W,XIONG X Y,et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures-Taking the eastern margin of Ordos Basin as an example[J].China Offshore Oil and Gas,2022,34(4):30-42.

[10]
SONG X, LU X X, SHEN Y Q, et al. A modified supercritical Dubinin-Radushkevich model for the accurate estimation of high-pressure methane adsorption on shales[J].International Journal of Coal Geology, 2018, 193: 1-15.

[11]
陈尚斌,张楚,刘宇.页岩气赋存状态及其分子模拟研究进展与展望[J].煤炭科学技术,2018,46(1):36-44.

CHEN S B, ZHANG C, LIU Y. Research progress and prospect of shale gas occurrence and its molecular simulation[J]. Coal Science and Technology, 2018, 46(1): 36-44.

[12]
王恩泽,郭彤楼,刘波,等.海陆过渡相页岩岩相、孔隙特征及有利岩相富气条件——以四川盆地东南缘林滩场地区二叠系龙潭组为例[J].石油勘探与开发,2022,49(6):1132-1142.

WANG E Z, GUO T L, LIU B, et al. Lithofacies and pore features of marine-continental transitional shale and gas enrichment conditions of favorable lithofacies: A case study of Permian Longtan Formation in the Lintanchang area, southeast of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1132-1142.

[13]
SHANG F Z, YANMING H, QINHONG Z, et al. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103676.

[14]
谷一凡,蔡光银,李树新,等.不同岩相海陆过渡相页岩孔隙结构及控制因素——以鄂东缘地区山西组山2 3亚段为例[J].沉积学报,2023,41(1):318-332.

GU Y F,CAI G Y,LI S X,et al.Pore Structure and controlling factors of different lithofacies in transitional shale:A case study of the Shanxi Formation Shan2 3 submember, eastern Ordos Basin[J].Acta Sedimentologica Sinica,2023,41(1):318-332.

[15]
WANG Y, LIU L F, ZHENG S S, et al. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 134-146.

[16]
ZHENG H, YANG F, GUO Q L, et al. Multi-scale pore structure, pore network and pore connectivity of tight shale oil reservoir from Triassic Yanchang Formation, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110283.

[17]
霍建峰,高健,郭小文,等.川东地区龙马溪组页岩不同岩相孔隙结构特征及其主控因素[J].石油与天然气地质,2020,41(6):1162-1175.

HUO J F, GAO J, GUO X W, et al. Characteristics and controlling factors of pore structures of various lithofacies in shales of Longmaxi Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(6): 1162-1175.

[18]
HAN H, CAO Y, CHEN S J, et al. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin,China[J].Fuel, 2016, 186: 750-757.

[19]
李琪琪,徐尚.海陆过渡相页岩储层研究现状与展望[J].地质通报,2022,41(8):1417-1429.

LI Q Q, XU S. Research status and prospects of marine-continental transitional shale reservoirs[J].Geological Bulletin of China, 2022, 41(8): 1417-1429.

[20]
曹涛涛,邓模,肖娟宜,等.海陆过渡相页岩储层特征及含气赋存机理——基于与海相页岩储层对比的认识[J].天然气地球科学,2023,34(1):122-139.

CAO T T,DENG M,XIAO J Y,et al.Reservoir characteristics of marine-continental transitional shale and gas-bearing mechanism: Understanding based on comparison with marine shale reservoir[J].Natural Gas Geoscience,2023,34(1):122-139.

[21]
姜福杰,贾承造,庞雄奇,等.鄂尔多斯盆地上古生界全油气系统成藏特征与天然气富集地质模式[J].石油勘探与开发,2023,50(2):250-261.

JIANG F J, JIA C Z, PANG X Q, et al. Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(2): 250-261.

[22]
何登发.中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J].地学前缘,2022,29(6):24-59.

HE D F. Multi-cycle superimposed sedimentary basins in China: Formation, evolution, geologic framework and hydrocarbon occurrence[J].Geoscience Frontiers,2022,29(6):24-59.

[23]
邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3):433-442.

ZOU C N,YANG Z,HUANG S P,et al. Resource types, formation,distribution and prospects of coal-measure gas[J].Petroleum Exploration and Development,2019,46(3):433-442.

[24]
HE Q B, CHEN S J, LI S X, et al. Organic geochemical characteristics and hydrocarbon generation mechanism of marine-continental transitional organic-rich shale: A case study from the Shanxi Formation in the eastern margin of the Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2022, 219: 11116.

[25]
付金华,赵会涛,董国栋,等.鄂尔多斯盆地新领域油气勘探发现与前景展望[J].天然气地球科学,2023,34(8):1289-1304.

FU J H, ZHAO H T, DONG G D, et al. Discovery and prospect of oil and gas exploration in new areas of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(8): 1289-1304.

[26]
付金华,董国栋,周新平,等.鄂尔多斯盆地油气地质研究进展与勘探技术[J].中国石油勘探,2021,26(3):19-40.

FU J H, DONG G D, ZHOU X P, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.

[27]
何江川,余浩杰,何光怀,等.鄂尔多斯盆地长庆气区天然气开发前景[J].天然气工业,2021,41(8):23-33.

HE C J, YU H J, HE G H, et al. Natural gas development prospect in Changqing gas province of the Ordos Basin[J].Na-tural Gas Industry, 2021,41(8):23-33.

[28]
付金华,魏新善,罗顺社,等.庆阳深层煤成气大气田发现与地质认识[J].石油勘探与开发,2019,46(6):1047-1061.

FU J H, WEI X S, LUO S S, et al. Discovery and geological knowledge of the large deep coal-formed Qingyang Gas Field, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(6): 1047-1061.

[29]
LI Y, TANG D Z, WU P, et al. Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 314-327.

[30]
武瑾,王红岩,施振生,等.海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J].石油勘探与开发,2021,48(6):1137-1149.

WU J, WANG H Y, SHI Z S, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: A case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1137-1149.

[31]
匡立春,董大忠,何文渊,等.鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J].石油勘探与开发,2020,47(3):435-446.

KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.

[32]
吴鹏,高丽军,李勇,等.海陆过渡相岩性频繁互层型页岩气潜力评价方法——以鄂尔多斯盆地临兴区块下二叠统山西组为例[J].天然气工业,2022,42(2):28-39.

WU P, GAO L J, LI Y, et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: A case study on the Lower Permian Shanxi Formation in Linxing block of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(2): 28-39.

[33]
李萧,孙寅森.鄂尔多斯盆地山西组海陆过渡相泥页岩孔隙结构特征[J].中国石油大学胜利学院学报,2021,35(3):17-21.

LI X, SUN Y S. Pore structure characteristics of marine and continental transitional shale in Shanxi Formation, Ordos Basin[J]. Journal of Shengli College China University of Petroleum, 2021, 35(3): 17-21.

[34]
蔡光银,蒋裕强,李星涛,等.海陆过渡相与海相富有机质页岩储层特征差异[J].沉积学报,2022,40(4):1030-1042.

CAI G Y, JIANG Y Q, LI X T, et al. Comparison of characteristics of transitional and marine organic-rich shale reservoirs[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1030-1042.

[35]
付金华,郭少斌,刘新社,等.鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J].吉林大学学报(地球科学版),2013,43(2):382-389.

FU J H, GUO S B, LIU X S, et al. Shale gas accumulation condition and exploration potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J]. Journal of Jinlin University (Earth Science Edition), 2013, 43(2): 382-389.

[36]
牛小兵,范立勇,闫小雄,等.鄂尔多斯盆地煤岩气富集条件及资源潜力[J].石油勘探与开发,2024,51(5):972-985.

NIU X B, FAN L Y, YAN X X, et al. Enrichment conditions and resource potential of coal-rock gas in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024,51(5): 972-985.

[37]
李勇,何建华,邓虎成,等.常压页岩储层优势岩相孔隙结构表征及其影响因素——以川东南林滩场五峰组—龙马溪组为例[J].天然气地球科学,2023,34(7):1274-1288.

LI Y,HE J H,DENG H C,et al. Pore structure characterization and its influencing factors in favorable lithofacies of normal pressure shale reservoirs: Case study of Wufeng-Longmaxi formations in Lintanchang are, Southeast Sichuan Basin[J].Natural Gas Geoscience,2023,34(7):1274-1288.

[38]
WU Z R, HE S, LI X C, et al. Comparative study on pore structure characteristics of marine and transitional facies shales: A case study of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze area,South China[J]. Journal of Petroleum Science and Engineering, 2022, 215(A): 110578.

[39]
MAHBUBUL M, SOURAV M, KYAW T, et al. Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms[J]. International Journal of Heat and Mass Transfer, 2018, 122:795-805.

[40]
谢卫东,王猛,王华,等.海陆过渡相页岩气储层孔隙多尺度分形特征[J].天然气地球科学,2022,33(3):451-460.

XIE W D,WANG M,WANG H,et al.Multi-scale fractal characteristics of pores in transitional shale gas reservoir[J].Natural Gas Geoscience, 2022, 33(3): 451-460.

[41]
李小明,王亚蓉,吝文,等.湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J].天然气地球科学,2022,33(4):629-641.

LI X M,WANG Y R,LIN W, et al. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area,Hubei Province[J].Natural Gas Geoscience,2022,33(4):629-641.

[42]
WANG P F,ZHANG C,LI X,et al.Organic matter pores stru-cture and evolution in shales based on the he ion microscopy (HIM):A case study from the Triassic Yanchang,Lower Silurian Longmaxi and Lower Cambrian Niutitang shales in China[J].Journal of Natural Gas Science and Engineering,2020,84:103682.

[43]
XI Z D, TANG S H, LI J, et al. Pore characterization and the controls of organic matter and quartz on pore structure: Case study of the Niutitang Formation of northern Guizhou Province, South China[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 18-31.

[44]
熊亮,杨振恒,申宝剑,等.川南威荣地区五峰组—龙马溪组深层页岩气微观储集空间发育特征及意义[J].天然气地球科学,2022,33(6):860-872.

XIONG L, YANG Z H, SHEN B J, et al. Micro reservoir space characteristics and significance of deep shale gas in Wufeng-Longmaxi formations in Weirong area, South Sichuan[J]. Natural Gas Geoscience, 2022, 33(6): 860-872.

[45]
HU C E, TAN J Q, LU Q, et al. Evolution of organic pores in Permian low maturity shales from the Dalong Formation in the Sichuan Basin: Insights from a thermal simulation experiment[J]. Gas Science and Engineering, 2024, 121: 205166.

文章导航

/