杨民鑫(1999-),男,四川绵阳人,硕士研究生,主要从事油气田开发地质研究.E⁃mail: 949459178@qq.com. |
收稿日期: 2023-09-28
修回日期: 2023-11-08
网络出版日期: 2024-03-18
Fine anatomy of reservoir architecture based on frequency division RGB fusion technology:A case study of the Oligocene Huagang Formation in Xihu Depression, East Sea Basin
Received date: 2023-09-28
Revised date: 2023-11-08
Online published: 2024-03-18
Supported by
The National Natural Science Foundation of China(41872142)
the Project of China Petrochemical Corporation Shanghai Offshore Oil and Gas Branch(34000000-22-ZC0613-0015)
H5b小层是东海盆地西湖凹陷黄岩构造渐新统花港组目前的主力产气层,发育辫状河三角洲前缘亚相沉积,由于单一河道间的复杂叠置关系,导致储层非均质性和砂体动用情况复杂,当前对砂体间连通性的认识不足,亟需对H5b小层进行储层构型精细表征。常规地震属性分析技术往往多解性强,因而通过分频优选与RGB融合、储层构型模式指导、动态响应特征约束等手段,对研究区4、5级构型单元进行了精细表征。结果表明:①在海上稀井网条件下,分频RGB融合技术相比常规地震属性分析技术而言,混色显示的颜色差异与亮度变化使河道砂体边界和砂体厚度分布更加连续清晰,对构型单元的识别精度有显著提升,通过井震结合、水平井信息和平剖互动,佐证了其对于构型边界位置的识别精度达到了30 m以内。②将H5b小层分频优选出的23、35、60 Hz 3个单频数据体进行RGB融合,在该分频组所对应RGB颜色响应的有效砂厚区间内,响应砂厚与测井解释砂厚相关性高,R=0.799 9。③利用分频RGB融合技术在相沉积模式和构型模式的指导下,结合动态资料,在研究区内划分出5条5级复合河道构型边界,复合河道构型单元宽1 000~3 000 m,厚15~80 m;4级单一河道构型单元宽150~800 m,定性表征独立型和叠加型4级单一河道构型边界为不连通性边界,切叠型4级单一河道构型边界为半连通性边界。通过分频RGB融合技术精细刻画了研究区4级和5级构型边界,分析了不同构型边界的连通性特征,为该类气藏的剩余气高效开发提供了理论借鉴及技术支撑。
杨民鑫 , 赵晓明 , 梁岳立 , 阴国峰 , 王健伟 , 葛家旺 , 胡成军 , 严曙梅 , 潘潞 . 基于分频RGB融合技术的储层构型精细解剖——以东海盆地西湖凹陷渐新统花港组为例[J]. 天然气地球科学, 2024 , 35(7) : 1323 -1338 . DOI: 10.11764/j.issn.1672-1926.2023.11.004
The H5b sandstone reservoir in the Xihu Depression of East Sea Basin is the current main gas-producing layer of the Huangyan Structure in the Gradual New Period of the Huagang Formation. It deposits in the subfacies of a braided river delta front, and due to complex overlapping relationships within single river channels, it exhibits reservoir heterogeneity and complex sand body utilization patterns. There is currently a lack of understanding of the connectivity between sand bodies in the H5b formation, making it essential to provide a detailed characterization of the reservoir configuration. Conventional seismic attribute analysis techniques often have high ambiguity. Therefore, through methods such as frequency-based selection and RGB fusion, reservoir configuration modeling guidance, and dynamic response feature constraints, a refined representation of the 4th and 5th order configuration units in the study area was conducted. The results indicate: (1) Under sparse offshore well networks, the frequency-based RGB fusion technique, compared to conventional seismic attribute analysis techniques, provides a more continuous and clear display of river sand body boundaries and sand body thickness distribution through color variations and brightness changes. This significantly improves the accuracy of identifying configuration units, with recognition accuracy of configuration boundary positions within 30 meters, supported by well-seismic integration, horizontal well information, and cross-section interaction. (2) By combining the 23 Hz, 35 Hz, and 60 Hz single-frequency data volumes selected by frequency, RGB fusion can intuitively display the distribution of sand body thickness and boundaries of different configuration units. Within the effective recognition range of sand body tuning thickness in frequency-based RGB fusion, there is a high correlation (R=0.799 9) between RGB color response and log interpretation sand thickness. (3) Using the frequency-based RGB fusion technique guided by facies and configuration models, combined with dynamic data, five composite river channel configuration boundaries with 5th order complexity were identified in the area. These composite river channel configuration units have a width of 1 000 to 3 000 meters and a thickness of 15 to 80 meters. The 4th order single river channel configuration units have a width of 150 to 800 meters. The independent and superimposed 4th order configuration boundaries are considered non-connectivity boundaries, while the cut-over 4th order single river channel configuration boundaries are considered semi-connectivity boundaries. Through frequency-based RGB fusion technology, the 4th and 5th order configuration boundaries in the study area were finely delineated, and the connectivity characteristics of different configuration boundaries were analyzed, providing a theoretical guidance and technical support for the efficient development of this type of gas reservoir.
1 |
岳大力,李伟,王军,等 . 基于分频融合地震属性的曲流带预测与点坝识别:以渤海湾盆地埕岛油田馆陶组为例[J]. 古地理学报,2018,20(6):941-950.
YUE D L,LI W,WANG J,et al. Prediction of meandering belt and point-bar recognition based on spectral-decomposed and fused seismic attributes:A case study of the Guantao Formation,Chengdao Oilfield, Bohai Bay Basin[J]. Journal of Palaeogeography,2018,20(6):941-950.
|
2 |
李顺明,宋新民,蒋有伟,等 . 高尚堡油田砂质辫状河储集层构型与剩余油分布[J]. 石油勘探与开发,2011,38(4):474-482.
LI S M,SONG X M,JIANG Y W,et al. Architecture and remaining oil distribution of the sandy braided river reservoir in the Gaoshangpu Oilfield[J]. Petroleum Exploration and Development,2011,38(4):474-482.
|
3 |
孙天建,穆龙新,吴向红,等 . 砂质辫状河储层构型表征方法——以苏丹穆格莱特盆地Hegli油田为例[J]. 石油学报,2014,35(4):715-724.
SUN T J,MU L X,WU X H,et al. A quantitative method for architectural characterization of sandy braided-river reservoirs:Taking Hegli Oilfield of Muglad Basin in Sudan as an example[J]. Acta Petrolei Sinica,2014,35(4):715-724.
|
4 |
朱卫红,吴胜和,尹志军,等 . 辫状河三角洲露头构型——以塔里木盆地库车坳陷三叠系黄山街组为例[J]. 石油勘探与开发,2016,43(3):482-489.
ZHU W H,WU S H,YIN Z J,et al. Braided river delta outcrop architecture: A case study of Triassic Huangshanjie Formation in Kuche Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development,2016,43(3):482-489.
|
5 |
赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058.
ZHAO X M,WU S H,LIU L. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo Oilfield,Niger Delta Basin[J].Acta Petrolei Sinica,2012,33(6):1049-1058.
|
6 |
吴胜和,徐振华,刘钊.河控浅水三角洲沉积构型[J]. 古地理学报,2019,21(2):202-215.
WU S H,XU Z H,LIU Z. Depositional architecture of fluvial-dominated shoal water delta[J]. Journal of Palaeogeography,2019,21(2):202-215.
|
7 |
曹江骏,杨友运,陈朝兵,等 . 致密砂岩储层骨架砂体构型特征——以鄂尔多斯盆地合水地区延长组长6段砂体为例[J]. 沉积学报,2019,37(6):1105-1116,1103.
CAO J J,YANG Y Y,CHEN Z B,et al. Analysis of configuration characteristics for skeleton sand body with tight sandstone reservoir:A case study of Triassic Chang 6 members in Heshui area, Ordos Basin, NW China[J]. Acta Sedimentologica Sinica,2019,37(6):1105-1116,1103.
|
8 |
郭太现,赵春明. 基于地震信息的歧口18-1稀井网区储层预测[J]. 现代地质,2013,27(3):703-709.
GUO T X,ZHAO C M. Reservoir prediction based on seismic data within wide well space area of Qikou 18-1 block[J]. Geoscience,2013,27(3):703-709.
|
9 |
胡光义,范廷恩,陈飞,等 . 复合砂体构型理论及其生产应用[J]. 石油与天然气地质,2018,39(1):1-10.
HU G Y,FAN T E,CHEN F,et al. Theory of composite sand body architecture and its application to oilfield development[J]. Oil & Gas Geology,2018,39(1):1-10.
|
10 |
王夏斌,姜在兴,胡光义,等 . 浅水三角洲分流河道沉积模式分类[J]. 地球科学与环境学报,2020,42(5):654-667.
WANG X B,JIANG Z X,HU G Y,et al. Classification of sedimentary models of distributary channels in shallow-water deltas[J].Journal of Earth Sciences and Environment,2020,42(5):654-667.
|
11 |
付鑫,杜晓峰,官大勇,等. 地震沉积学在河流—浅水三角洲沉积相研究中的应用:以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报,2021,40(3):96-108.
FU X,DU X F,GUAN D Y,et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies:A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology,2021,40(3):96-108.
|
12 |
姜秀清 . 储层地震属性优化及属性体综合解释[D]. 广州:中国科学院广州地球化学研究所,2006.
JIANG X Q. The Optimization of Reservoir Seismic Attributes and the Comprehensive Interpretation of Attribute-body[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2006.
|
13 |
HART B S. Channel detection in 3-D seismic data using sweetness[J]. AAPG Bulletin,2008,92(6):733-742.
|
14 |
CHOPRA S,MARFURT K J. Seismic attribute expression of differential compaction[J]. The Leading Edge,2012,31(12):1418-1422.
|
15 |
郭太现,杨庆红,黄凯,等 . 海上河流相油田高效开发技术[J]. 石油勘探与开发,2013,40(6):708-714.
GUO T X,YANG Q H,HUANG K,et al. Techniques for high-efficient development of offshore fluvial oilfields[J]. Petroleum Exploration and Development,2013,40(6):708-714.
|
16 |
朱筱敏,董艳蕾,曾洪流,等.中国地震沉积学研究现状和发展思考[J]. 古地理学报,2020,22(3):397-411.
ZHU X M,DONG Y L,ZENG H L,et al. Research status and thoughts on the development of seismic sedimentology in China[J]. Journal of Palaeogeography,2020,22(3):397-411.
|
17 |
ZENG H L. Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels[J].Interpretation(Tulsa),2017,5(3):T411-T422.
|
18 |
李婷婷,王钊,马世忠,等. 地震属性融合方法综述[J]. 地球物理学进展,2015,30(1):378-385.
LI T T,WANG Z,MA S Z,et al. Summary of seismic attributes fusion method[J]. Progress in Geophysics,2015,30(1):378-385.
|
19 |
曹鉴华 . RGB混频显示技术及其在河道识别中的应用[J]. 勘探地球物理进展,2010,33(5):355-358,308.
CAO J H. RGB color blending and its application in channel recognition[J].Progress in Exploration Geophysics,2010,33(5):355-358,308.
|
20 |
王楠,杜鹏,赵悦伊,等.地震RGB分频属性融合技术在J工区河道砂体空间展布中的应用[J].海洋石油,2016,36(3):8-12.
WANG N,DU P,ZHAO Y Y,et al. Application of the technology of decomposed frequency RGB blending seismic attribute in interpretation of spatial distribution of channel sand body of J area[J]. Offshore Oil,2016,36(3):8-12.
|
21 |
丁峰,年永吉,王治国,等 . 地震多属性RGBA颜色融合技术的应用研究[J]. 石油物探,2010,49(3):248-252,255.
DING F,NIAN Y J,WANG Z G,et al. Application of seismic multi-attributes RGBA color blending[J]. Geophysical Prospecting for Petroleum,2010,49(3):248-252,255.
|
22 |
马佳国,王建立,周卿,等 . 分频RGB融合技术在精细刻画沉积微相中的应用[J]. 复杂油气藏,2019,12(3):27-31.
MA J G,WANG J L,ZHOU Q,et al. Frequency division RGB fusion technique for fine description of sedimentary microfacies[J]. Complex Hydrocarbon Reservoirs,2019,12(3):27-31.
|
23 |
ZENG H L,ZHU X M,LIU Q H,et al. An alternative,seismic-assisted method of fluvial architectural-element analysis in the subsurface:Neogene,Shaleitian area,Bohai Bay Basin,China[J]. Marine and Petroleum Geology,2020,118:104435.
|
24 |
侯东梅,郭敬民,全洪慧,等 . 基于分频RGB融合技术和水平井信息的辫状河储层构型研究——以C油田馆陶组为例[J]. 石油科学通报,2022,7(1):1-11.
HOU D M,GUO J M,QUAN H H,et al. Research into braided river reservoir architecture based on frequencyfused seismic attribute and horizontal wells:A case study of the Guantao Formation of C oilfield[J]. Petroleum Science Bulletin,2022,7(1):1-11.
|
25 |
杨传胜,杨长清,李刚,等 . 东海陆架盆地中—新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质,2018,38(2):136-147.
YANG C S,YANG C Q,LI G,et al. Prospecting of Meso-Cenozoic hydrocarbon in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology,2018,38(2):136-147.
|
26 |
刘金水,曹冰,徐志星,等 . 西湖凹陷某构造花港组沉积相及致密砂岩储层特征[J]. 成都理工大学学报(自然科学版),2012,39(2):130-136.
LIU J S,CAO B,XU Z X,et al. Sedimentary facies and the characteristics of tight sandstone reservoirs of Huagang For-mation in Xihu Depression,East China Sea Basin[J].Journal of Chengdu University of Technology(Science & Technology Edition) ,2012,39(2):130-136.
|
27 |
陈琳琳,谢月芳 . 东海西湖凹陷花港组沉积模式初探[J]. 海洋石油,1998,18(4):15-21.
CHEN L L,XIE Y F. Preliminary study on sedimentary model of Huagang Formation in Xihu Sag, East China Sea[J]. Offshore Oil,1998,18(4):15-21.
|
28 |
于兴河,李顺利,曹冰,等 . 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报,2017,35(2):299-314.
YU X H,LI S L,CAO B,et al. Oligocene sequence framework and depositional response in the Xihu Depression, East China Sea Shelf Basin[J].Acta Sedimentologica Sinica,2017,35(2):299-314.
|
29 |
ZHANG J,LU Y,KRIJGSMAN W,et al. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin[J]. Marine & Petroleum Geology,2018,98:733-745.
|
30 |
朱毅秀,黄导武,王欢,等 . 东海西湖凹陷A气田渐新统花港组三段厚层砂岩沉积环境[J].石油与天然气地质,2019,40(6):1226-1235.
ZHU Y X,HUANG D W,WANG H,et al. Sedimentary setting of thick sandstone in the 3rd member of the Oligocene Huagang Formation in A gas field in the Xihu Sag,East China Sea Basin[J]. Oil & Gas Geology,2019,40(6):1226-1235.
|
31 |
XU F H, XU G S, LIU Y, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration and Development,2020,47(1):101-113.
|
32 |
刘贤,葛家旺,赵晓明,等.东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别[J]. 石油与天然气地质,2022,43(4):990-1004.
LIU X,GE J W,ZHAO X M,et al. Time scale and quantitative identification of sequence boundaries for the Oligocene Huagang Formation in the Xihu Sag,East China Sea Shelf Basin[J]. Oil & Gas Geology,2022,43(4):990-1004.
|
33 |
曾洪流,朱筱敏,朱如凯,等 . 砂岩成岩相地震预测——以松辽盆地齐家凹陷青山口组为例[J]. 石油勘探与开发,2013,40(3):266-274.
ZENG H L,ZHU X M,ZHU R K,et al. Seismic prediction of sandstone diagenetic facies:Applied to Cretaceous Qingshankou Formation in Qijia Depression,Songliao Basin[J]. Petroleum Exploration and Development,2013,40(3):266-274.
|
34 |
蒋龙聪 . 薄互层储层地震响应时频分析研究[D]. 武汉:中国地质大学,2008.
JIANG L C. The Method of Time-Frequency Analysis Applied in Thin Interbedded Reservoir[J].Wuhan:China University of Geosciences,2008.
|
35 |
李振春,刁瑞,韩文功,等. 线性时频分析方法综述[J]. 勘探地球物理进展,2010,33(4):239-246,227.
LI Z C,DIAO R,HAN W G,et al. Review on linear time-frequency analysis methods[J]. Progress in Exploration Geophysics,2010,33(4):239-246,227.
|
36 |
陈学华,贺振华,黄德济. 广义S变换及其时频滤波[J]. 信号处理,2008,24(1):28-31.
CHEN X H,HE Z H,HUANG D J. Generalized S transform and its time-frequency filtering[J].Journal of Signal Processing,2008,24(1):28-31.
|
37 |
李斌 . 应用地震分频属性进行储层描述研究[D]. 北京:中国石油大学(北京),2019.
LI B. A Study on the Application of Time-Frequency Decomposed Seismic Attributes to Reservoir Characterization[J]. Beijing: China University of Petroleum(Beijing),2019.
|
38 |
MIALL A D. Architectural-element analysis:A new method of facies analysis applied to fluvial deposites[J]. Earth Science Reviews,1985,22(2):261-308.
|
39 |
乔向阳,李靖,冯东,等 . 低渗气井压力和产量递减规律及其影响因素[J]. 石油钻采工艺,2017,39(3):259-266.
QIAO X Y,LI J,FENG D,et al. Pressure and production decline laws of low-permeability gas wells and their influential factors[J].Oil Drilling & Production Technology,2017,39(3):259-266.
|
/
〈 |
|
〉 |