非常规天然气

松辽盆地白垩系嫩江组煤系页岩孔隙结构及分形特征

  • 张吉振 , 1, 2 ,
  • 韩登林 3 ,
  • 林伟 4 ,
  • 王晨晨 5 ,
  • 王建国 1 ,
  • 肖肖 1 ,
  • 李豫 1 ,
  • 张晓婵 1
展开
  • 1. 长江大学油气地球化学与环境湖北省重点实验室,湖北 武汉 430100
  • 2. 中国石化页岩油气勘探开发重点实验室,北京 100083
  • 3. 长江大学地球科学学院,湖北 武汉 430100
  • 4. 临沂大学地质与古生物研究所,山东 临沂 276000
  • 5. 长江大学非常规油气省部共建协同创新中心,湖北 武汉 430100
张吉振(1991-),男,山东济宁人,博士,副教授,硕士生导师,主要从事非常规油气储层地质表征、成藏分析等研究和教学工作.E-mail:.

收稿日期: 2023-06-24

  修回日期: 2023-07-22

  网络出版日期: 2024-01-10

Pore structure and fractal characteristics of coal-bearing Cretaceous Nenjiang shales from Songliao Basin, Northeast China

  • Jizhen ZHANG , 1, 2 ,
  • Denglin HAN 3 ,
  • Wei LIN 4 ,
  • Chenchen WANG 5 ,
  • Jianguo WANG 1 ,
  • Xiao XIAO 1 ,
  • Yu LI 1 ,
  • Xiaochan ZHANG 1
Expand
  • 1. Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University),Wuhan 430100,China
  • 2. SINOPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology,Beijing 100083,China
  • 3. School of Geosciences,Yangtze University,Wuhan 430100,China
  • 4. Institute of Geology and Paleontology,Linyi University,Linyi 276000,China
  • 5. Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province),Yangtze University,Wuhan 430100,China

Received date: 2023-06-24

  Revised date: 2023-07-22

  Online published: 2024-01-10

Supported by

The National Natural Science Foundation of China(42202141)

the Natural Science Foundation of Hubei Province,China(2021CFB370)

the Open Fund Project of SINOPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology(33550000-22-ZC0613-0204)

摘要

页岩微观孔隙系统是气体赋存场所,孔隙结构精细刻画对于储层研究而言至关重要。页岩储层孔隙具有较强的复杂性和非均质性,而且煤系页岩孔隙发育特征研究显著滞后于海相页岩储层,亟需开展煤系页岩孔隙非均质性特征及其对含气性影响的深入研究。以松辽盆地松原地区白垩系嫩江组煤系页岩岩心为研究对象,通过开展全岩有机碳(TOC)和岩矿测定、孔隙度分析、低温N2吸附—脱附和CH4等温吸附实验,探讨了煤系页岩基质组分对孔隙结构和非均质性特征的影响,孔隙结构特征与分形特征的关系,以及孔隙结构和非均质性对甲烷吸附特征的影响。结果表明:①嫩江组页岩有机质丰度变化不显著(TOC平均含量为2.38%),多发育墨水瓶状孔;富含黏土矿物(平均含量为55.6%),多发育狭缝状孔隙;页岩孔隙表面具有明显的分形特性,分形维数D 1D 2均值分别为2.54和2.74,内部结构较表面结构更为复杂。②有机碳的富集通过影响微小孔孔隙发育,增加比表面积使孔隙分形维数增大;黏土矿物发育致使介孔和宏孔数量增多,增加了孔隙的分形维数。③微小孔隙发育较大比表面积,增加了孔隙结构的复杂性和非均质性,促使分形特征显著,拓展了吸附点位,提升了吸附能力。相关研究将为煤系页岩储层综合评价、成藏理论研究提供科学理论依据。

本文引用格式

张吉振 , 韩登林 , 林伟 , 王晨晨 , 王建国 , 肖肖 , 李豫 , 张晓婵 . 松辽盆地白垩系嫩江组煤系页岩孔隙结构及分形特征[J]. 天然气地球科学, 2024 , 35(1) : 119 -132 . DOI: 10.11764/j.issn.1672-1926.2023.07.018

Abstract

Shale oil and gas resources mainly exist in the pore and fracture system. Quantitative characterization of pore development characteristics and gas-bearing characteristics are the key to shale reservoir evaluation. The pore development of shale reservoir has strong complexity and heterogeneity, and the research on pore development characteristics of coal measure shale lags behind that of marine shale reservoir, thus it is urgent to investigate pore heterogeneity characteristics of coal-bearing shale and its influence on gas bearing property. Therefore, the coal-bearing Cretaceous Nenjiang shales from Songyuan area of Songliao Basin were selected as the research object in this study. Through the total organic carbon (TOC), X-ray diffraction experiment, porosity analysis, nitrogen adsorption desorption experiment and methane isothermal adsorption experiments, the characteristics of pore structure, heterogeneity and gas bearing property of coal-bearing shale were analyzed. The influence of rock and mineral components on the pore structure and heterogeneity characteristics, the relationship between pore structure characteristics and fractal characteristics, and the effects of pore structure and heterogeneity on methane adsorption capacity were also discussed. The results show that: (1) The organic matter abundance of the shale in the Nenjiang Formation does not change significantly (the average TOC content is 2.38%), and ink bottle-shaped pores are mostly developed; it is rich in clay minerals (average content 55.6%), and the slit-shaped pores are mostly developed. The pore surface of shale has obvious fractal characteristics, and the average fractal dimension D 1 and D 2 are 2.54 and 2.74, and the internal structure is more complex than the surface structure. (2) The enrichment of organic carbon increases the specific surface area by affecting the development of micropores and pores, and increases the fractal dimension of pores; the development of clay minerals increases the number of mesopores and macropores, increasing the fractal dimension of pores. (3) Small pores develop larger specific surface area, which increases the complexity and heterogeneity of the pore structure, promotes the remarkable fractal characteristics, expands the adsorption sites, and improves the adsorption capacity. This work will provide scientific theoretical basis for comprehensive evaluation of coal-bearing shale reservoir and shale gas reservoir forming theory research.

0 引言

为应对世界能源格局变化,保障能源安全,页岩气作为一种重要的非常规天然气资源,在世界范围内备受关注1-3。北美页岩气革命后,随着页岩气储层地质理论不断发展,我国已取得页岩气资源商业性开发突破4-6。微观孔隙系统是页岩气赋存的主要空间7-9。与常规天然气储层相比,页岩储层既作为页岩气的产气层,又作为页岩气储集层,是一种非均匀性多孔介质,孔隙结构复杂,微观非均质程度较高,具有低孔低渗的特征10-12。孔隙结构是页岩气储层评价的核心,直接影响气体赋存、渗流特征13-15。页岩气储层孔隙形貌及展布、结构复杂粗糙程度、均一性特征极为复杂16-18。鉴于孔隙结构参数包括孔容、孔比表面积和孔径及其分布规律,对研究页岩气赋存状态、解吸扩散与渗流作用意义重大19-21。因此,定量表征孔隙结构及非均质性特征对储层综合研究极为关键。松辽盆地白垩系富有机质页岩的成因问题一直是石油勘探界关注的热点问题, 近年来随着非常规油气理论研究的不断深入,嫩江组作为页岩油气储层逐渐开始受到关注22-25。目前松辽盆地嫩江组页岩储层微观孔隙结构及分形特征刻画较为薄弱,制约煤系页岩储层精细评价分析及资源量有效评估,不利于盆地内页岩油气勘探开发的进程。
页岩储层作为一种复杂的多孔介质,其复杂程度和均质化程度直接影响页岩中油气的聚集、流动及产出,定量刻画孔隙结构的复杂性和非均质性特征对于页岩储层评价及有利储层优选极为重要。常规的欧式几何难以对多孔介质页岩的非均一性进行精确刻画,而分形几何克服了欧氏几何理论描述多孔介质结构存在的瓶颈,能对复杂事物作精细描述26-27,目前广泛应用于岩石孔隙结构非均质性研究28-30。分形维数定义区间值为2~3,分形特征越显著,该值越大2631-32。分形维数能够定量描述分形系统的自相似性,是定量表征孔隙发育非均质性和复杂性的关键性指标,对于页岩储层评价极为重要2631-32。目前,煤系页岩储层中孔隙分形及其对页岩气吸附的影响控制作用研究仍较薄弱。基于此,笔者基于低温氮气吸附实验结果和FHH模型,系统探究煤系页岩分形维数及其与矿物组分、有机质含量、孔隙结构及甲烷吸附能力之间的关系,这对揭示煤系页岩孔隙发育机制、微观储层评价及有利储层优选具有一定意义。

1 地质概况及样品采集

松辽盆地覆盖面积广阔(26×104 km2),是国内典型的裂谷盆地,主要经历5期构造活动演化,形成断—坳双重格局[图1(a)]33-34。目前盆地主要划分为6个次级断陷构造单元[图1(a)]3335-36。盆地上白垩统沉积多套地层,由下至上包括青山口组、姚家组、嫩江组、四方台组及明水组3335-36。其中嫩江组是一套含煤系地层,发育优质烃源岩。该地层可分为2个沉积亚段:早期盆地沉降迅速加快湖水侵入;晚期湖面湖深均继续扩大,使得盆地中部湖相泥页岩沉积广布,发育厚层黑色泥页岩和油页岩,局部夹薄层粉砂岩沉积[图1(b)]35-37
图1 松辽盆地构造区位及采样点位置(a)和松原地区白垩系嫩江组地层综合柱状图(以ZA钻井为例)(b)

Fig.1 The location of tectonic division zones and sampling points (a), and the comprehensive columnar section of Cretaceous Nenjiang strata (taking Well ZA as an example)(b) in the Songyuan area of Songliao Basin

本文研究样品采集自ZA、ZB、ZC共3口钻井,采样深度介于1 443~1 937 m之间,主要位于松原市附近,处于松辽盆地中央坳陷和东南隆起区之间的次级构造单元边缘(图1)。本文研究3口钻井岩心样品选自连续沉积单元,岩性变化较小,全区差异不显著,嫩江组新鲜岩心样品主要为黑色泥质页岩,每口井自上而下近似等间距取样,每口井取心4块,合计12块样,在区内具有代表性。样品采集后及时进行封存并送往实验室,开展3口钻井岩心样品的综合实验测试分析。

2 页岩基质组分特征

松原地区嫩江组煤系页岩总有机碳(TOC)含量测定实验前,需要将样品粉碎成粒径小于150 mm的粉末,并用盐酸处理以去除碳酸盐,之后用纯水清洗去除盐酸,然后放入烤箱进行脱水处理。之后将干燥样品放入在LECO-230碳硫分析仪,参照国家标准《沉积岩中总有机碳测定》(GB/T 19145—2022)进行试验。研究区嫩江组页岩样品的TOC含量和矿物组分含量分析(均为质量分数)结果如表1所示。3口钻井页岩岩心样品的TOC含量为1.02%~3.64%,平均为2.38%。XRD衍射全岩矿物分析实验前需要将页岩样品碾碎成200目的粉末,并选取500 mg的量填入进带有凹槽的薄片内,保持样品表面与薄片表面平整一致。实验分析仪器采用D/Max 2500 PC型粉末X射线衍射仪。实验依托中国石油天然气行业标准《沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法》(SY/T 5163—2018)进行。测试环境:Cu靶,Kα射线,X射线管电压、电流分别为40 Kv和150 mA,扫描速度4 °/min,步长0.02°,起始角2°,终角70°。
表1 页岩样品TOC含量及矿物组成含量

Table 1 TOC content and mineralogical compositions of shale samples

样品编号 埋深/m TOC/% 黏土矿物/% 矿物组分/%
伊利石 伊/蒙混层 高岭石 绿泥石 黏土矿物 石英 长石 斜长石 方解石 白云石 黄铁矿 其他
ZA-3 1 443 2.45 11.95 47.95 1.42 0.98 62.3 24.68 1.22 0.95 3.42 2.94 1.65 2.84
ZA-6 1 464 3.64 17.82 45.85 2.13 1.90 67.7 21.85 1.57 1.27 2.14 2.13 1.83 1.52
ZA-8 1 473 1.72 11.03 34.96 1.83 1.38 49.2 38.19 2.23 1.61 3.23 2.23 2.42 0.90
ZA-9 1 492 2.23 13.62 39.07 1.48 1.13 55.3 31.30 2.56 1.49 1.94 2.86 3.02 1.53
ZB-2 1 472 2.93 9.32 46.06 1.42 1.90 58.7 27.37 1.57 0.48 4.12 3.75 0.34 3.68
ZB-4 1 483 3.02 11.83 40.18 1.42 1.77 55.2 30.41 1.94 0.98 2.32 4.24 0.83 4.07
ZB-6 1 510 3.41 13.34 46.97 1.32 1.57 63.2 24.47 1.44 1.61 3.42 2.83 1.34 1.69
ZB-8 1 524 2.87 12.31 45.03 0.43 1.13 58.9 27.11 1.28 1.06 4.21 2.42 1.32 3.70
ZC-7 1 873 1.02 5.29 35.14 1.24 0.83 42.5 39.38 3.21 0.96 3.09 1.52 4.23 5.11
ZC-9 1 894 2.23 10.53 37.55 1.27 0.95 50.3 31.13 1.94 3.31 1.20 4.23 3.24 4.66
ZC-11 1 912 1.13 8.36 36.86 0.52 1.06 46.8 32.88 3.16 0.85 1.03 4.23 4.23 6.82
ZC-12 1 937 1.93 11.23 43.55 0.97 1.65 57.4 27.15 2.75 1.15 2.42 3.012 1.52 4.59
分析表明嫩江组煤系页岩样品富含黏土矿物(42.5%~67.7%,平均为55.6%)和石英(21.85%~39.38%,平均为29.66%)。伊/蒙混层和伊利石为主要黏土矿物,含量分别为34.96%~47.95%和5.29%~17.82%(平均为41.60%和11.39%)。此外,黏土矿物还含有少量绿泥石(0.83%~1.90%,平均为1.35%)和高岭石(0.43%~2.13%,平均为1.29%)。如图2所示,嫩江组煤系页岩样品的黏土含量和TOC含量之间呈现良好的正相关关系,决定系数R 2为0.782[图2(a)],而TOC含量与石英之间具有负相关关系[图2(b),R 2=0.654],与前人认识一致38-39。此外,在样品中检测到黄铁矿,含量为0.34%~0.42%(平均为0.22%),指示还原环境。
图2 松辽盆地松原地区白垩系嫩江组页岩TOC含量与黏土矿物含量(a)和石英含量(b)关系

Fig.2 Relationships between TOC and quartz contents (a), clay minerals contents (b) of the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

3 页岩孔隙结构及分形特征

3.1 孔隙形态特征

N2吸附—脱附实验过程主要参照国家标准《气体吸附BET法测定固态物质比表面积》(GB/T 19587—2017)和《压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第2部分:气体吸附法分析介孔和大孔》(GB/T 21650.2—2008)在北京理化分析中心进行。实验前,将页岩样品粉碎成40~80目,并在约110 °C的真空条件下脱气约5 h,以去除吸附的水分和毛细管束缚水。然后将粉末样放入Quadrasorb™比表面积分析仪,进行了低压气体吸附测量。通过实验获得N2在-195.85 ℃下的吸附/解吸等温线,通过将相对压力由0.01升高至0.995,达到氮气的饱和蒸汽压,并逐渐降低压力,然后测得不同相对压力P/P 0下N2的吸附量。
根据IUPAC对标准吸附等温线类型的划分,可将等温吸附曲线分为Ⅰ型—Ⅵ型6类,其中Ⅳ型和Ⅴ型等温线反映的是介孔的气体吸附特征,该类型吸附曲线可以形成回滞环。通过识别回滞环的形状,可以将介孔形态划分为A类—F类6种类型,分别指示圆柱形孔、平板狭缝形孔、楔形/V形/锥形孔、尖壁形孔、墨水瓶状孔和密封死孔(图3)。从低温氮气吸附实验获取吸附—脱附曲线图(图4)可以看出,在相对压力较高(P/P 0>0.5)时,由于多分子层吸附的加入,吸附和脱附过程不可逆,吸附和脱附曲线发生分离,等温线的吸附分支将与解吸分支不一致,出现滞后环特征,形成迟滞回线40-43。这一过程属于多层覆盖阶段,这一现象可能反映了页岩样品的孔隙大小具有很强的非均质性。嫩江组页岩样品吸附等温线与Ⅳ型等温线相近(图3图4),反映嫩江组页岩介孔孔隙特征显著,利于开展孔隙形态学及分形特征研究。根据N2吸附—解吸等温线的回滞环形状,嫩江组煤系页岩样品孔隙形态可分为2类:第一类特征是在相对较低压力下是可逆的或平行的,但等温线的解吸曲线在相对高压力(大于0.45)下呈现拐点[图4(a)—图4(f)],这种类型的回滞环可归类为图3所示E类孔隙,它反映了具有窄颈和宽体的孔隙(称为墨水瓶状孔隙);另外一类孔隙在相对压力较高(大于0.45)时N2吸附量相对较小[图4(h)—图4(l)],主要属于图3所示B类孔隙,与狭缝型孔隙密切相关。发育这类孔隙的页岩通常黏土矿物的高含量,是由于黏土矿物形成的孔隙通常为狭缝状所导致。
图3 气体等温线、回滞环类型及其对应孔隙结构形态(据文献[4447-48]修改)

Fig.3 Gas isotherm and hysteretic ring types and the corresponding pore structure morphologys (modified from Refs.[4447-48])

图4 松辽盆地松原地区白垩系嫩江组页岩低压N2吸附—脱附曲线

Fig.4 Low pressure N2 adsorptione-desorption isotherms of the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

3.2 孔隙结构特征

基于低温N2吸附—脱附实验,可定量分析页岩储层孔隙结构参数(包括孔体积、比表面积和孔径分布),结果如表2所示。分别基于Barret-Joyner-Halenda(BJH)模型44和Brunauer-Emmett-Teller(BET)模型45,获得总孔容和总比表面积分别为0.019~0.028 cm3/g(平均为0.024 cm3/g)和4.92~13.23 m2/g(平均为8.73 m2/g)。微孔、介孔和宏孔的孔容占比分别为25.8%~74.2%(平均为56.1%)、11.4%~43.8%(平均为22.9%)和1.6%~62.8%(平均为21.0%),孔比表面积贡献率分别为46.7%~92.5%(平均为73.2%)、0.5%~43.8%(平均为10.3%)和3.1%~46.7%(平均为16.5%)。孔隙体积与孔隙孔径尺寸大小的关系曲线可用于表征孔径尺度分布,包括孔隙体积增量、累积量曲线44-45
表2 松辽盆地松原地区白垩系嫩江组煤系页岩孔隙结构及分形特征

Table 2 Pore structure and fractal characteristics of the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

样品

编号

孔容/(cm3/g) 比表面积/(m2/g) 孔隙度/% 分形特征参数
总孔 微孔 介孔 宏孔 总孔 微孔 介孔 宏孔 D 1 D 2 K 1 K 2
ZA-3 0.025 0.018 5 0.006 1 0.000 4 9.13 8.41 0.41 0.31 7.57 2.57 2.80 -0.43 -0.20
ZA-6 0.024 0.017 4 0.005 4 0.001 2 8.43 3.94 0.56 3.94 7.10 2.55 2.77 -0.45 -0.23
ZA-8 0.028 0.010 2 0.005 5 0.012 3 12.43 9.09 0.06 3.29 9.53 2.54 2.74 -0.46 -0.26
ZA-9 0.026 0.018 4 0.007 0 0.000 7 9.33 4.95 4.09 0.29 7.79 2.55 2.75 -0.45 -0.25
ZB-2 0.025 0.013 7 0.005 1 0.006 2 9.89 8.59 0.45 0.84 7.93 2.56 2.79 -0.44 -0.21
ZB-4 0.028 0.020 0 0.006 9 0.001 1 13.23 12.24 0.36 0.64 9.90 2.58 2.80 -0.42 -0.20
ZB-6 0.022 0.005 7 0.002 5 0.013 8 8.27 5.14 2.75 0.36 6.77 2.52 2.71 -0.48 -0.29
ZB-8 0.023 0.010 5 0.003 6 0.008 9 6.85 4.34 0.04 2.47 6.23 2.56 2.76 -0.44 -0.24
ZC-7 0.019 0.008 4 0.002 2 0.008 4 4.92 3.70 0.70 0.52 4.79 2.50 2.67 -0.50 -0.33
ZC-9 0.023 0.013 1 0.007 5 0.002 4 7.08 5.92 0.50 0.66 6.34 2.53 2.73 -0.47 -0.27
ZC-11 0.020 0.014 3 0.004 3 0.001 4 6.64 5.70 0.32 0.62 5.74 2.52 2.68 -0.48 -0.32
ZC-12 0.023 0.011 5 0.010 1 0.001 4 8.51 5.40 0.10 3.01 7.02 2.53 2.72 -0.47 -0.28
根据孔径分布曲线可以获得有关孔隙结构的重要信息,包括孔径范围、优势孔径以及不同孔径范围对总孔隙体积的贡献程度。本文研究采用了BJH模型,基于N2吸附—脱附数据计算孔径分布特征。N2吸附分支在计算孔径分布方面具有很高优势,不易受到拉伸强度效应的影响46。通过BJH方法计算的煤系页岩样品的孔隙体积分布如图5所示,页岩样品的孔径分布很宽,曲线呈单峰或多峰分布,主峰分别约为4 nm和30~100 nm,反映微孔及介孔较为发育。图5(h)—图5(l)对应样品中20~60 nm范围内孔隙比例现状高于图5(a)—图5(g)中孔径分布,结合孔隙形态特征,指示黏土矿物孔隙大量发育平板狭缝形孔隙,该类孔隙相比有机质孔隙具有较大的孔径尺度。
图5 松辽盆地松原地区白垩系嫩江组页岩孔径分布曲线

Fig.5 Pore-size distribution curves of the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

3.3 分形特征

分形几何的定量评价是用分形维数D来描述。目前,基于气体吸附—解吸数据,FHH方法广泛应用于多孔介质分形刻画38-394447-48。分形维数D的计算方法如下:
LnV=ALn(Ln(P 0/P)+constant
D=A+3
式中:V是在N2吸附实验中对应于平衡压力P的孔隙累积体积分数;P 0是饱和吸附压力;A是从Ln(Ln(P 0 /P))对LnV的曲线的斜率。分形维数D可以由线斜率A结合式(2)计算获得。根据N2吸附数据和FHH模型,可以在P/P 0处绘制2个不同的线性段,范围分别为0~0.5和0.5~1.0。分形维数D 1对应P/P 0值范围为0~0.5,而D2 对应P/P 0值范围为0.5~1.0。
根据Ln(V)与Ln[Ln(P 0/P)]拟合线斜率可定量获取分形维数数值D 1D 2图6)。线性拟合决定系数位于0.96以上,反映拟合效果较好,表明分形特征较为显著。计算结果显示,嫩江组煤系页岩发育显著孔隙分形特征,具有强非均质性和粗糙度。计算获得分形维数D 1D 2分别介于2.50~2.58(平均为2.54)和2.67~2.80(平均为2.74)之间。D 2总体高于D 1,表明对于表面结构而言,孔隙内部特征更具复杂性。按照前述孔隙形态分类,第1类页岩样品微孔更为发育[图5(a)—图5(f)],其孔隙结构更为复杂。
图6 松辽盆地松原地区白垩系嫩江组典型样品孔隙分形特征分析

Fig.6 Fractal dimension analysis of pores in typical Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

第1类页岩样品的滞后环形状可视为E类,主要出现在墨水瓶状孔隙中,这使得气体在页岩中的吸附、扩散和渗流更加困难。这种现象可能是因为第2类页岩样品[介孔、宏孔更为发育,图5(g)—图5(1)]的埋深整体大于第1类页岩,受到更加强烈的地质应力,从而增强了页岩孔隙结构的非均匀性。

4 分形特征对页岩气富集的控制作用

4.1 煤系页岩基质组分对分形特征的影响

嫩江组煤系页岩分形维数D 1D 2线性相关性较强[R 2=0.937,图7(a)],表明煤系页岩孔隙表面与内部空间的非均质性和复杂程度呈现较好的对应关系,孔隙表面越复杂的页岩一般孔隙内部结构也越加复杂。从图7(b)可以看出,嫩江组煤系页岩D 1D 2均与TOC值呈正相关。这是由于有机质发育较多微孔,而该类孔隙具有更大的比表面积,使得孔隙非均质性增强49-50。而页岩的孔隙结构越复杂或孔隙表面越粗糙,使孔隙分形维数增大,页岩吸附能力增强,更有利于对天然气的储存47-4649。此外,页岩分形维数与页岩矿物组成存在一定程度的相关性[图7(c),图7(d)]。前人对海相、陆相及海陆过渡相页岩储层孔隙发育特征研究表明,页岩黏土矿物中主要发育介孔和宏孔,有机质中主要发育微孔和介孔51-57。嫩江组煤系页岩中黏土矿物含量增加,使页岩中介孔和宏孔数量增多(图5)。脆性矿物含量与分形维数两者关系不显著,呈较弱负相关性[图7(d)],脆性矿物通常具有规则晶形结构,孔隙尺度多为宏孔,相对较为均一化,使得孔隙结构分形特征降低。煤系页岩孔隙孔径总体高于海相页岩,而低于海陆过渡相页岩及陆相页岩,以微孔及介孔为主要孔隙尺度类型58-60
图7 松辽盆地松原地区白垩系嫩江组页岩分形特征及与基质组分关系

Fig.7 Fractal characteristics and their relationship with matrix components in the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

4.2 孔隙结构对分形特征的影响

为探讨孔隙结构对分形特征的影响,如图8所示,笔者系统分析了分形维数与孔隙度、孔容、孔比表面积、平均孔径的相关关系。总体而言,与海相页岩、海陆过渡相页岩及陆相页岩相似,煤系页岩分形维数值D 1D 2与孔隙度呈正相关关系[R 2分别为0.535、0.459,图8(a)]。另外,图8(b)反映的是分形维数值D 1D 2与孔体积的关系曲线,可以看出,两者呈现正相关关系,拟合系数R 2分别为0.636和0.575。上述特征表明孔隙空间越大,孔隙分形特征越显著,非均质性和复杂程度越强。图8(c)显示分形维数值D 1D 2与孔比表面积呈现良好的正相关性(R 2分别为0.487、0.410),孔隙结构较为复杂,越复杂的结构使得孔隙比表面积越大。页岩在气体的吸附方面主要表现在孔表面的吸附,因此分形特征对页岩的吸附能力具有一定的表征作用。孔隙分形维数值D 1D 2与平均孔直径有高度的负相关性,R 2分别为0.626和0.687[图8(d)],即平均孔径减小,分形维数值增加。由于孔隙的不规则性无法直接用平均孔径表征孔体积,但是平均孔径小的孔隙,孔体积有减小趋势,越小的孔隙其孔隙比表面积通常越大,使得孔隙分形维数值增大,小孔径孔隙是引起页岩孔隙结构不均匀性的重要原因。煤系页岩孔隙分形维数稍高于海相页岩和海陆过渡相页岩58-60,显示出更强的非均质特征,或与其介孔占比更高,拓展了孔隙结构复杂性有关。
图8 松辽盆地松原地区白垩系嫩江组页岩分形特征与孔隙结构关系

Fig.8 Relationship between fractal characteristics and pore structure in the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

4.3 页岩甲烷等温吸附特征

页岩甲烷等温吸附实验依照国家标准《页岩甲烷等温吸附测定方法 第1部分:容积法》(GB/T 35210.1—2017)进行,湿度平衡的样品(120~150 g)置于35 °C的恒定温度并逐步升压至22 MPa,获得高压甲烷吸附等温线,并采用朗格缪尔方程进行拟合定量获得朗格缪尔体积和朗格缪尔压力等关键参数。甲烷页岩吸附是页岩气赋存的重要形式,甲烷与页岩的吸附属于物理吸附,即发生在吸附质分子与吸附剂表面分子之间的作用力。甲烷等温吸附实验通常在实验室中用于确定某物质的吸附能力,同时该实验的吸附与解吸是2个不同阶段。这2个阶段共同用来表征CH4在储层赋存的性能,体现这种性能的主要指标为吸附态的页岩气含量。在不同压力条件下,通过Langmuir方程进行拟合处理并得出甲烷的吸附气量。最大甲烷吸附量为兰氏体积,同时反映出压力与吸附量的变化趋势,即反映出在未超过20 MPa压力时,甲烷吸附能力随着压力变大而越来越强。如图9所示,松辽盆地嫩江组页岩甲烷等温吸附曲线直至接近压力值为20 MPa时,甲烷吸附能力几乎达到最大,甲烷吸附量介于1.9~4.2 m3/t之间。整体而言,TOC含量高的页岩通常具有更强的甲烷吸附能力。
图9 松辽盆地松原地区白垩系嫩江组页岩甲烷等温吸附曲线

Fig.9 Methane isothermal adsorption curves in the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

4.4 影响页岩吸附特征的主要因素

对比嫩江组煤系页岩甲烷吸附气量与有机质丰度、矿物含量关系[图10(a),图10(b)],发现页岩的吸附能力同时受有机质和黏土矿物含量影响,且个别样品偏离了趋势线,使得单一参量之间的拟合相关性变弱。因此,仍需从各种基质组分所发育的微观孔隙结构特征对其与分形特征的关系进行分析。总体而言,有机质、黏土矿物越富集,越有利于页岩气的吸附。一方面,有机质和黏土矿物具有强于脆性矿物的甲烷吸附能力,同时嫩江组煤系页岩以Ⅲ型干酪根为主,比起Ⅰ型和Ⅱ型干酪根而言更加富含芳香烃;另一方面,有机质、黏土矿物吸附热显著高于脆性矿物,且有机质更高,同时有机质发育更加复杂的微小孔隙,具有更大的孔隙吸附比表面积,黏土矿物通常发育介孔和宏孔,具有较大的吸附空间。孔隙度、孔容、比表面积均与甲烷吸附气量呈正相关关系[图10(c)—图10(e)],越大的孔隙体积和比表面积为页岩气的吸附提供了有利场所,利于页岩气吸附和富集。当孔隙壁面越光滑,也即分形维数越小,气体在孔隙中的扩散速率越快;而分形维数越大,气体的扩散速率越小,即复杂化的孔隙结构将利于页岩气的滞留,使得吸附气含量增加[图10(f)]。由此可见,有机质中富集微小孔隙,具有更大的孔隙比表面积,利于页岩气的吸附;黏土矿物中发育大量介孔和宏孔,具有页岩气富集的有利储集空间;有机质和黏土矿物的富集,均使得孔隙结构变得更加复杂化,增大孔隙分形维数值,有利于页岩气的富集。
图10 松辽盆地松原地区白垩系嫩江组页岩甲烷吸附能力影响因素分析

Fig.10 Analysis on influencing factors of methane adsorption capacity in the Cretaceous Nenjiang shales from Songyuan area of Songliao Basin

5 结论

(1)松辽盆地松原地区嫩江组页岩有机质丰度变化不大(TOC含量平均为 2.38%),有机质孔隙多为墨水瓶状孔,富含黏土矿物(平均为55.6%),黏土矿物形成的孔隙通常为狭缝状孔隙。嫩江组页岩孔隙度、孔容和比表面积之间具有良好相关性。嫩江组页岩孔隙表面具有明显的分形特性,分形维数D 1D 2平均值分别为2.54和2.74,同一样品的D 2值普遍大于D 1值,且分形维数值较为集中,反映孔隙内部结构较表面结构更为复杂。
(2)嫩江组页岩有机碳和黏土含量都对孔隙分形特征影响较大。前者通过增加微小孔隙发育较大比表面积;后者通过拓展较大孔隙空间,从而增加结构复杂性。两者均使孔隙分形特征更加显著,提升页岩气的吸附能力,更有利于页岩气的富集。
(3)嫩江组页岩储层中小孔径孔隙是引起页岩孔隙结构不均匀性的重要原因。越小的孔隙其孔隙比表面积通常越大,同时拓展了孔隙空间,孔隙结构趋于复杂,使得孔隙分形维数值增大,有利于页岩气富集。
1
李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009,29(5):11-16.

LI J Z, DONG D Z, CHEN G S, et al. Prospects and strategic position of shale gas resources in China[J]. Natural Gas Industry,2009,29(5):11-16.

2
聂海宽,何发岐,包书景.中国页岩气地质特殊性及其勘探对策[J].新能源,2011,31(11):111-116.

NIE H K, HE F Q, BAO S J. Peculiar geological characteristics of shale gas in China and its exploration countermeasures[J]. New Energy,2011,31(11):111-116.

3
邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.

ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166-178.

4
邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021,41(1):1-14.

ZOU C N, ZHAO Q, CONG L Z, et al. Development progress,potential and prospect of shale gas in China[J].Natural Gas Industry, 2021,41(1):1-14.

5
郭旭升,胡东风,魏志红,等.涪陵页岩气田的发现与勘探认识[J].中国石油勘探,2016,21(3):24-37.

GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration,2016,21(3): 24-37.

6
谢军,鲜成钢,吴建发,等.长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J].中国石油勘探,2019,24(2):174-185.

XIE J, XIAN C G, WU J F, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration,2019,24(2):174-185.

7
赵文智,贾爱林,位云生,等.中国页岩气勘探开发进展及发展展望[J].中国石油勘探,2020,25(1):31-44.

ZHAO W Z, JIA A L, WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration,2020,25(1):31-44.

8
金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.

JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formation, southeastern Sichuan Basin[J]. Earth Science Frontiers,2016,23(1):1-10.

9
郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发,2016,43(3):317-326.

GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development,2016,43(3):317-326.

10
朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.

ZHU H Q, JIA A L, WEI Y S, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J]. Acta Petrolei Sinica,2018,39(4):391-401.

11
SHI M, YU B S, ZHANG J C, et al. Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation, southeastern Sichuan Basin, China[J]. Marine and Petroleum Geology,2018,94(6):166-178.

12
YANG R, HE S, YI J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology,2016, 70(2):27-45.

13
胡宗全,杜伟,彭勇民,等.页岩微观孔隙特征及源—储关系——以川东南地区五峰组—龙马溪组为例[J].石油与天然气地质,2015,36(6):1001-1008.

HU Z Q,DU W,PENG Y M,et al.Microscopic pore characteristics and the source-reservoir relationship of shale:A case study from the Wufeng and Longmaxi Formations in Southeast Sichuan Basin[J].Oil & Gas Geology,2015,36(6):1001-1008.

14
刘伟新,鲍芳,俞凌杰,等.川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J].石油实验地质,2016,38(4):453-459.

LIU W X,BAO F,YU L J,et al.Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan[J]. Petroleum Geology & Experiment,2016,38(4):453-459.

15
张吉振,李贤庆,郭曼,等.川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素[J].天然气地球科学,2015,26(8):1571-1578.

ZHANG J Z, LI X Q, GUO M, et al. Microscopic pore characteristics and its influence factors of the Permian Longtan Formation shales in the southern Sichuan Basin[J]. Natural Gas Geoscience,2015,26(8):1571-1578.

16
张吉振,李贤庆,张学庆,等.煤系页岩储层孔隙结构特征和演化[J].煤炭学报,2019,44(S1):195-204.

ZHANG J Z, LI X Q, ZHANG X Q, et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society,2019,44(S1):195-204.

17
张吉振,李贤庆,邹晓艳,等.海陆过渡相煤系页岩气储层孔隙结构表征及其对页岩气吸附的影响[J].地球化学,2021,50(5):478-491.

ZHANG J Z, LI X Q, ZOU X Y, et al. Pore structure characteristics of a marine-continental coal-bearing shale reservoir and its effect on the shale gas-containing property[J]. Geochimica,2021,50(5):478-491.

18
方镕慧,刘晓强,张聪,等.温度压力耦合作用下的页岩气吸附分子模拟——以鄂西地区下寒武统为例[J].天然气地球科学,2022,33 (1):138-152.

FANG R H, LIU X Q, ZHANG C, et al. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province[J]. Natural Gas Geoscience,2022,33 (1):138-152.

19
谷渊涛,李晓霞,万泉,等.泥页岩有机质孔隙差异特征及影响因素分析——以我国典型海相、陆相、过渡相储层为例[J].沉积学报, 2021,39(4):794-810.

GU Y T,LI X X,WAN Q,et al.On the different characteristics of organic pores in shale and their influencing factors: Taking typical marine,continental, and transitional facies reservoirs in China as examples[J].Acta Sedimentologica Sinica,2021,39(4):794-810.

20
张吉振.煤系页岩孔隙结构表征及其对页岩气赋存的影响研究[D].北京:中国矿业大学(北京),2019:3-20.

ZHANG J Z. Pore Structure Characterization of Coal-bearing Shale and its Effect on Shale Gas Occurrence[D].Beijing:China University of Mining and Technology(Beijing),2019:3-20.

21
YAN G Y, WEI C T, SONG Y, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS[J]. Earth Science,2018,43(5):1602-1610.

22
商斐,周海燕,刘勇,等.松辽盆地嫩江组泥页岩有机质富集模式探讨——以嫩江组一、二段油页岩为例[J].中国地质,2020,47(1):236-248.

SHANG F, ZHOU H Y, LIU Y, et al. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China,2020,47(1):236-248.

23
LIU W, LIU M, YANG T, et al. Organic matter accumulations in the Santonian-Campanian (Upper Cretaceous) lacustrine Nenjiang shale (k2 n) in the Songliao Basin, NE China: Terrestrial responses to OAE3?[J]. International Journal of Coal Geology,2022,260:104069.

24
XU C, SHAN X, HE W, et al. The influence of paleoclimate and a marine transgression event on organic matter accumulation in lacustrine black shales from the Late Cretaceous, southern Songliao Basin,Northeast China[J].International Journal of Coal Geology, 2021,246:103842.

25
程璇,徐尚,郝芳,等.松辽盆地嫩江组富有机质页岩有机孔隙成因[J].地质科技情报,2019,38(4):62-69.

CHENG X, XU S, HAO F, et al. Origin of organic pores in the organic-rich shale of Nenjiang Formation, Songliao Basin, China[J].Geological Science and Technology Information,2019,38(4):62-69.

26
SAKHAEE-POUR A, LI W. Fractal dimensions of shale[J]. Journal of Natural Gas Science and Engineering,2016,30:578-582.

27
刘凯,石万忠,王任,等.鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J].地质科技通报, 2021,40(1): 57-68.

LIU K, SHI W Z, WANG R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the first member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology,2021,40(1):57-68.

28
LIU J, YAO Y, LIU D, et al. Comparison of pore fractal characteristics between marine and continental shales[J]. Fractals,2018,26(5):1840016.

29
SHAO X, PANG X, LI Q, et al. Pore structure and fractal characteristics of organic-rich shales: A case study of the Lower Silurian Longmaxi shales in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology,2017,80:192-202.

30
LIU K,OSTADHASSAN M, KONG L. Fractal and multifractal characteristics of pore throats in the Bakken shale[J]. Transport in Porous Media,2019,126(3):579-598.

31
XIE W D, WANG M, WANG X Q, et al. Nano-pore structure and fractal characteristics of shale gas reservoirs: A case study of Longmaxi Formation in southeastern Chongqing, China[J]. Journal of Nanoscience and Nanotechnology,2021,21(1):343-353.

32
何文渊,蒙启安,林铁锋,等.温度作用下松辽盆地北部白垩系嫩江组低熟页岩原位渗透率演化特征[J].石油勘探与开发,2022,49(3): 453-464.

HE W Y, MENG Q A, LIN T F, et al. Evolution of in-situ permeability of low-maturity shale under temperature and triaxial stress, Nenjiang Formation, northern Songliao Basin, NE China[J]. Petroleum Exploration and Development,2022,49(3):453-464.

33
柳波,刘阳,刘岩,等.低熟页岩电加热原位改质油气资源潜力数值模拟: 以松辽盆地南部中央坳陷区嫩江组一、二段为例[J].石油实验地质,2020,42(4):533-544.

LIU B, LIU Y, LIU Y, et al. Prediction of low-maturity shale oil produced by in situ conversion: A case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J].Petroleum Geology and Experiment,2020,42(4):533-544.

34
JIA J L, BECHTEL A, LIU Z J, et al. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses[J]. International Journal of Coal Geology,2013,113:11-26.

35
赵健,方石,张新荣,等.松辽盆地中央坳陷区晚白垩世嫩江组层序结构与沉降速率的耦合分析[J].世界地质, 2023,42(2): 245-255.

ZHAO J, FANG S, ZHANG X R, et al. Coupling analysis between sequence structure and subsidence rates of Late Cretaceous Nenjiang Formation in central depression area of Songliao Basin[J]. World Geology, 2023,42(2):245-255.

36
HU J G, TANG S H, ZHANG S H. Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J]. Journal of Natural Gas Science and Engineering,2016,28:522-535.

37
LIU X, XIONG J, LIANG L. Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in Central China by nitrogen adsorption/desorption analysis[J]. Journal of Natural Gas Science and Engineering,2015,22(7):62-72.

38
LI A, DING W D, HE J H, et al. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi Formation in Malong Block of eastern Yunnan Province, South China[J]. Marine and Petroleum Geology,2016,70:46-57.

39
WANG Y, ZHU Y M, CHEN S B, et al. Characteristics of the nanoscale pore structure in northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion, and gas adsorption[J]. Energy & Fuels,2014,28(2):945-955.

40
何建华,丁文龙,付景龙,等.页岩微观孔隙成因类型研究[J].岩性油气藏,2014,26(5):30-35.

HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir[J]. Lithologic Reservoirs,2014,26(5):30-35.

41
LABANI M M, REZAEE R, SAEEDI A, et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning basins, western Australia[J]. Journal of Petroleum Science & Engineering,2013,112(3):7-16.

42
ZHANG J Z, LI X Q, WEI Q, et al. Quantitative characterization of pore-fracture system of organic-rich marine-continental shale reservoirs: A case study of the Upper Permian Longtan Formation,southern Sichuan Basin,China[J]. Fuel,2017,200:272-281.

43
ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology,2009,26(6):916-927.

44
GUAN Q Z, DONG D Z, WANG S F, et al. Preliminary study on shale gas micro-reservoir characteristics of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin, China[J].Journal of Natural Gas Science and Engineering,2016,31:382-395.

45
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.

46
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and net-works in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin,2012,96:1071-1098.

47
WANG Y, ZHU Y M, WANG H Y, et al. Nanoscale pore morphology and distribution of lacustrine shale reservoirs: Examples from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Journal of Energy Chemistry,2015,24:512-519.

48
International Union of Pure and Applied Chemistry(IUPAC). Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids (Technical report)[J]. Pure and Applied Chemistry,1994,66(8):1739-1758.

49
赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.

ZHAO P, LI X Q, TIAN X W, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience,2014,25(6):947-956.

50
徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征[J].岩性油气藏,2015,27(4):32-39.

XU Y, LÜ C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in Southeast Sichuan Basin[J]. Lithologic Reservoirs,2015,27(4): 32-39.

51
陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征[J].岩性油气藏,2018,30(1):55-62.

CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2018,30(1):55-62.

52
梁志凯,李卓,李连霞,等.松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J].岩性油气藏,2020,32(6):22-35.

LIANG Z K, LI Z, LI L X, et al. Relationship between multifractal characteristics of pore size and lithofacies of shale of Shahezi Formation in Changling Fault Depression, Songliao Basin[J].Lithologic Reservoirs,2020,32(6):22-35.

53
纪文明,宋岩,姜振学,等.四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J].石油学报,2016,37(2):182-195.

JI W M, SONG Y, JIANG Z X, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica,2016,37(2):182-195.

54
龚小平,唐洪明,赵峰,等.四川盆地龙马溪组页岩储层孔隙结构的定量表征[J].岩性油气藏,2016,28(3):48-57.

GONG X P, TANG H M, ZHAO F, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J].Lithologic Reservoirs,2016,28(3):48-57.

55
李成成,周世新,李靖,等.鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J].沉积学报,2017,35(2):315-329.

LI C C, ZHOU S X, LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the South of Ordos Basin[J]. Acta Sedimentologica Sinica,2017,35(2): 315-329.

56
郑珊珊,刘洛夫,汪洋,等.川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J].岩性油气藏, 2019,31(3):55-65.

ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2019,31(3):55-65.

57
黄金亮,董大忠,李建忠,等.陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J].天然气地球科学,2016,27(9):1611-1618.

HUANG J L, DONG D Z, LI J Z, et al. Reservoir fractal characteristics of continental shale:An example from Triassic Xujiahe Formation shale,Sichuan Basin,China[J].Natural Gas Geoscience,2016,27(9):1611-1618.

58
张吉振,李贤庆,邹晓艳,等.海陆过渡相煤系页岩孔隙结构特征及其对含气性的影响[J].地球化学,2021,50(5):629-641.

ZHANG J Z, LI X Q, ZOU X Y, et al., Pore structure characteristics of a marine-continental coal-bearing shale reservoir and its effect on the shale gas-containing property[J]. Geochimica,2021,50(5):629-641.

59
谢卫东,王猛,王华,等.海陆过渡相页岩气储层孔隙多尺度分形特征[J].天然气地球科学,2022,33(3):451-460.

XIE W D, WANG M, WANG H, et al. Multi-scale fractal characteristics of pores in transitional shale gas reservoir[J].Na-tural Gas Geoscience,2022,33(3):451-460.

60
李小明,王亚蓉,吝文,等.湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J].天然气地球科学,2022,33(4):629-641.

LI X M,WANG Y Y,LIN W, et al. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area,Hubei Province[J].Natural Gas Geoscience,2022,33(4):629-641.

文章导航

/