天然气地质学

柴达木盆地北缘东段不同凹陷内侏罗系烃源岩生烃潜力差异及成因探讨

  • 李世恩 , 1 ,
  • 王大华 2 ,
  • 关平 , 1 ,
  • 肖永军 2 ,
  • 张驰 1 ,
  • 呼其图 1 ,
  • 白璐 1 ,
  • 丁晓楠 1 ,
  • 张济华 1
展开
  • 1. 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871
  • 2. 中国石油化工股份有限公司胜利油田分公司勘探开发研究院,山东 东营 257000
关平(1960-),男,江苏南京人,博士,教授,主要从事沉积学与沉积地球化学研究.E-mail: .

李世恩(1996-),男,青海乐都人,博士研究生,主要从事沉积地球化学及石油与天然气地质学研究.E-mail:.

收稿日期: 2022-12-04

  修回日期: 2023-04-08

  网络出版日期: 2023-07-28

Difference and genesis of hydrocarbon-generation potential of Jurassic source rocks in different depressions in the eastern section of the northern margin of the Qaidam Basin

  • Shi’en LI , 1 ,
  • Dahua WANG 2 ,
  • Ping GUAN , 1 ,
  • Yongjun XIAO 2 ,
  • Chi ZHANG 1 ,
  • Qitu HU 1 ,
  • Lu BAI 1 ,
  • Xiaonan DING 1 ,
  • Jihua ZHANG 1
Expand
  • 1. Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution,School of Earth and Space Sciences,Peking University,Beijing 100871,China
  • 2. Exploration and Development Research Institute of Shengli Oilfield Company,SINOPEC,Dongying 257000,China

Received date: 2022-12-04

  Revised date: 2023-04-08

  Online published: 2023-07-28

Supported by

The Special Project of the SINOPEC Petroleum Exploration and Production Research Institute(42141021)

本文亮点

柴达木盆地北缘东段马海东构造油气勘探的突破,揭示了该区侏罗系烃源岩具有较强的油气潜力。结合柴北缘东段地区野外剖面和钻井岩心的地球化学数据,对不同凹陷内发育的烃源岩丰度、类型和成熟度等进行了详细的对比分析,并探讨了其生烃潜力差异的控制因素。结果显示:①该区侏罗系烃源岩主要分布在中侏罗统大煤沟组五段和大煤沟组七段中,分别以湖沼相煤系烃源岩和半深湖—深湖相暗色泥页岩为主,其中大煤沟组七段烃源岩丰度较高,以Ⅰ型—Ⅱ型干酪根为主,为该地区烃源岩发育的重点层系;②红山凹陷烃源岩质量最好,热演化达到成熟阶段,有望成为下一步增储上产的重点凹陷区块;鱼卡凹陷与小柴旦凹陷次之,霍布逊和德令哈凹陷质量均较差;③不同凹陷间大煤沟组七段烃源岩的丰度和类型差异与沉积环境有关;霍布逊凹陷在这一时期发育滨湖—沼泽沉积,而红山、小柴旦和鱼卡凹陷为浅湖—半深湖沉积,前者烃源岩丰度和类型均较差;④不同凹陷间烃源岩成熟度的差异受到构造活动的控制;霍布逊、红山、德令哈凹陷属于持续沉降型凹陷,而鱼卡凹陷和小柴旦凹陷属于构造反转型凹陷,前者发育的烃源岩成熟度高而后者相对较低。

本文引用格式

李世恩 , 王大华 , 关平 , 肖永军 , 张驰 , 呼其图 , 白璐 , 丁晓楠 , 张济华 . 柴达木盆地北缘东段不同凹陷内侏罗系烃源岩生烃潜力差异及成因探讨[J]. 天然气地球科学, 2023 , 34(8) : 1343 -1356 . DOI: 10.11764/j.issn.1672-1926.2023.04.002

Highlights

The breakthrough of oil and gas exploration in the eastern Mahaidong structure of the northern margin of the Qaidam Basin reveals that the Jurassic source rocks in this area have strong oil and gas potential. This paper presents a detailed comparative analysis of geochemical indicators such as abundance, type and maturity of hydrocarbon source rocks developed in different depressions, and on this basis, the controlling factors of the differences in hydrocarbon generation potential are discussed. It is found that: (1)The Jurassic hydrocarbon source rocks in this region are mainly distributed in the fifth and seventh members of the Middle Jurassic Dameigou Formation, dominated by carbonaceous mudstone and dark mudstone or shale, respectively, among which the source rocks in the seventh member have higher abundance and are dominated by type Ⅰ-Ⅱ Kerogen, which is the key layer of source rock developed in this region; (2)The quality of source rocks in Hongshan depression is the best, and the thermal evolution has reached the mature stage, which is expected to be the key block for the next step of increasing storage and production; Yuka and Xiaochaidan depressions are followed by Hobson and Delingha depressions with poor quality; (3)The differences in the abundance and types of source rocks in the seventh member of different depressions are related to the sedimentary environment: the Hobson Depression developed lakeshore-swamp sediments in this period, while the Hongshan, Xiaochaidan and Yuka depressions were shallow-semi-deep lake, and the abundance and types of source rocks in the former are poor; (4)The difference of source rock maturity among different depressions is controlled by tectonic activities: Hobson, Hongshan and Delingha depressions are continuous subsidence depressions, while Yuka and Xiaochaidan depressions are tectonic reverse transition depressions. The former has high source rock maturity while the latter has relatively low maturity. This study has important guiding significance for the next oil and gas exploration deployment in Qaidam Basin.

0 引言

柴达木盆地位于青藏高原东北缘,盆地内发育的巨厚中新生代地层中蕴含着丰富的油气资源,是我国七大含油气盆地之一。柴达木盆地北缘(简称柴北缘)作为盆地内三大含油气系统之一,其油气勘探已经有60多年的历史,距今为止在柴北缘西段地区已经发现了冷湖、南八仙、马北及东坪等多个大中型油气田1-2,为青藏地区的油气供应和国家战略安全提供了基础能源保障。由于油气勘探工作的不断深入,前人3-8对柴北缘西段烃源岩的宏观分布、有机地球化学特征、油源对比及油气成藏模式进行了系统全面的研究,认为下侏罗统高成熟度的暗色泥岩是西段主要的烃源岩。
近年来随着勘探区域的不断开拓,中国石化胜利油田分公司在柴北缘东段的鱼卡凹陷马海东构造发现了工业油气流,在东段南缘的霍布逊凹陷也见到了明显的油气显示,上述情况都说明这一地区具有良好的勘探潜力,可以作为柴达木盆地下一步增储上产的接替区9-13。针对柴北缘东段烃源岩的分布和生烃潜力,前人的研究主要集中在鱼卡地区的油田及煤田钻井和红山凹陷的大煤沟等野外剖面714-24,少量研究涉及到德令哈凹陷和霍布逊凹陷1825-29。以上工作初步探明了柴北缘东段部分凹陷内发育的烃源岩的基本特征,但由于东段整体油气探明率较低,且研究重点主要集中在鱼卡和红山2个凹陷,对柴北缘东段侏罗系烃源岩的生烃潜力缺乏全面认识,对凹陷之间的生烃差异性也不甚清晰,烃源岩研究在一定程度上制约了实际的油气勘探工作。因此,本文在对柴达木盆地北缘东段野外剖面实际观测取样的基础上,结合钻井岩心开展了详细的地球化学分析,对该地区5个凹陷中烃源岩的发育情况及地球化学数据进行了详细的分析和对比,探讨了不同凹陷内烃源岩生烃潜力的控制因素,并优选了有利勘探区,以期为该地区下一步的勘探部署提供地质支撑。

1 区域地质背景

柴达木盆地北缘地区是盆地内的一级构造单元,东西分别以德令哈凹陷东端和阿尔金山为界,南北边界分别为鄂博梁南缘—陵间断裂—黄泥滩断裂—埃姆尼克山南缘深断裂和祁连山深大断裂30。柴北缘东段发育北西向3排逆冲山系,在控盆、控凹山系的限制下现今发育尕西、鱼卡、红山、小柴旦及霍布逊等9个次级凹陷(图1)。近年来通过露头、钻井及地震资料综合分析发现不同凹陷中侏罗系的发育情况存在较大的差异,其中尕丘凹陷和大柴旦凹陷缺失中生界,欧南凹陷中仅发育上侏罗统,烃源岩主要发育的层系——中侏罗统主要发育在鱼卡、红山、小柴旦、霍布逊和德令哈等5个凹陷中31。柴北缘东段现今构造格局主要受到燕山运动和喜马拉雅运动的控制,早中侏罗世柴达木盆地处于2次强烈碰撞之间的相对松弛伸展环境进而发育断陷盆地,晚侏罗世构造相对稳定因此发育坳陷盆地,而自早白垩世开始构造反转逆冲断裂复活,埃姆尼克山及欧龙布鲁克山等陆续隆升,中生代盆地演化终止32-39
图1 柴达木盆地北缘东段构造纲要图及地层综合柱状图(据文献[3140]修改)

Fig.1 Structural outline map and comprehensive column chart of the eastern section of the northern margin of Qaidam Basin (modified from Refs.[3140])

针对柴北缘东段侏罗纪原型盆地发育特征及岩相古地理分布情况,前人早期认为“早—中侏罗世为广盆沉积、现今残留凹陷均有分布”303241-45,后期随着实际勘探和研究的深入逐渐形成了“早—中侏罗世发育分隔性湖盆,在晚侏罗世才发展为统一沉积湖盆”的共识3145-48。柴北缘东段侏罗系主要发育J1、J2、J3共3套地层(图1),下侏罗统包括湖西山组(J1 h)、小煤沟组(J1 x)、大煤沟组一段至大煤沟组三段(J1 d 1—J1 d 3),中侏罗统包括大煤沟组四段到大煤沟组七段(J2 d 4—J2 d 7),上侏罗统包括采石岭组(J3 c)和红水沟组(J3 h)。前人49将柴北缘整个侏罗系划分为3个三级层序,分别由下侏罗统、中侏罗统和上侏罗统组成。其中层序二自中侏罗统底部的J2 d 4扇三角洲平原/冲积扇土黄色砾岩开始,一直持续到大煤沟组顶部的J2 d 7半深湖—深湖相深灰色泥页岩结束,整体为一个拗陷湖盆扩张的过程。根据岩性和沉积序列的变化,将中侏罗统又分为S4(大煤沟组四段、大煤沟组五段)和S5(大煤沟组六段、大煤沟组七段)2个四级层序45
本文研究的样品来自柴北缘东段的重点钻井岩心和野外剖面露头(图1),采样层位为中侏罗统,共包括358个烃源岩样品(其中鱼卡凹陷171个,小柴旦凹陷12个,红山凹陷155个,霍布逊凹陷20个)。在对剖面进行沉积环境等研究的基础上开展了详细的有机地球化学分析,其中霍布逊凹陷样品在中国石化胜利油田公司勘探开发研究院实验中心完成,其余样品在中国石油青海油田公司勘探开发研究院实验中心完成。

2 烃源岩岩性

柴北缘东段下侏罗统仅在红山凹陷(大煤沟剖面)有出露,中上侏罗统在各个凹陷中均有分布,其中中侏罗统为柴北缘东段发育烃源岩的主要层系。通过研究区野外剖面和钻井岩心观察发现,烃源岩主要发育在J2 d 5和J2 d 7 2套地层中,共包括暗色泥岩和煤系烃源岩2种类型。其中煤系烃源岩主要发育在J2 d 5中,包括炭质泥岩与煤2种岩性[图2(a),图2(b)],而暗色泥岩主要分布在J2 d 7中,在鱼卡凹陷的钻井岩心(如柴页1井,YYY-1井)中可见到黑色的油页岩发育50图2(c),图2(d)]。
图2 柴北缘东段烃源岩岩性特征

(a)红山凹陷大煤沟剖面,J2 d 5,煤层与炭质泥岩;(b)霍布逊凹陷HB9-2钻井,J2 d 5,灰黑色炭质泥岩;

(c)红岩沟剖面,J2 d 7上部,深灰色泥岩;(d)鱼卡凹陷柴页1井,J2 d 7,1 921.8 m,黑色油页岩

Fig.2 Lithologic characteristics of source rocks in the eastern section of the northern margin of Qaidam Basin

3 地球化学特征

3.1 有机质丰度

J2 d 5以煤系烃源岩为主而J2 d 7以暗色泥岩为主,这2个地层中发育的烃源岩分别按照煤系烃源岩和湖相烃源岩有机质丰度评价指标(SY/T 5735—1995)51-52进行了有机质丰度的级别划分。鉴于部分数据来自野外露头样品,氯仿沥青“A”和总烃含量在后期易发生变化而主要选取了总有机碳(TOC)和生烃潜量(P g=S 1+S 2)作为参考指标。
其中德令哈凹陷和小柴旦凹陷中J2 d 5缺失,因此这2个地区的烃源岩研究主要集中在J2 d 7。从图3可以看到J2 d 7暗色泥岩绝大部分都属于好—优质烃源岩,数据要明显优于J2 d 5煤系烃源岩。以丰度较高的J2 d 7烃源岩为例进行分析可以发现,柴北缘东段5个凹陷的烃源岩按照丰度可以分为2个等级:其中红山、鱼卡和小柴旦凹陷样品丰度最高,三者数据较为接近,基本都位于优质烃源岩范围中(TOC平均值分别为5.8%、5.68%和4.24%);其次为霍布逊凹陷和德令哈凹陷,其中霍布逊凹陷样品数据较为分散且相对较低(TOC平均值为2.13%);而德令哈凹陷由于没有探井钻至中侏罗统,烃源岩样品全部来自野外露头且岩性种类多(包括油页岩、炭质泥岩和暗色泥岩),数据分布较为分散,根据前人研究结果将其划为第三类烃源岩182527-28,有待今后随着勘探不断深入后进一步进行研究。
图3 J2烃源岩有机碳含量与生烃潜量关系

注:鱼卡凹陷部分数据来自文献[71550];红山凹陷部分数据来自文献[22];德令哈凹陷数据来自文献[25

Fig.3 Relationship between organic carbon content and hydrocarbon generation potential of J2 source rocks

3.2 有机质类型

有机质丰度的高低是烃源岩能否生烃的物质基础,而有机质的类型决定了烃源岩的生油气类型和能力。烃源岩热解数据和干酪根镜检数据是判断有机质类型的2个常用指标,此外氯仿沥青“A”的族组分组成与有机质母质类型也具有相关性,其中腐泥型有机质的饱和烃与芳烃比值较高而腐殖型有机质的二者比值则恰好相反53-54。在有机质成熟度较低的情况下,正构烷烃的分布也能较好地反映烃源岩母质类型55
通过烃源岩热解、干酪根显微组分、氯仿沥青“A”及正构烷烃分布等指标的分析,发现柴北缘东段J2 d 5和J2 d 7的烃源岩类型存在明显的差异。在有机质热解图版中J2 d 5样品主要分布在Ⅱ2和Ⅲ区域范围内[图4(a)],而J2 d 7样品主要分布在Ⅰ和Ⅱ2区域之间[图4(b)]。从干酪根显微组分来看,J2 d 5样品镜质组和惰质组含量基本都在25%以上[图5(a)],TTI平均值为15.68,主要为Ⅱ2型—Ⅲ型干酪根;而J2 d 7样品镜质组和惰质组的含量较低、腐泥组含量较高[除霍布逊样品外大部分都小于25%,图5(b)],TTI平均值为55.45,主要为Ⅰ型—Ⅱ1型干酪根。J2 d 5和J2 d 7样品氯仿沥青“A”的族组分组成差异也较大,前者饱和烃/芳香烃值要显著低于后者,母质类型整体属于Ⅱ型和Ⅲ型;而J2 d 7样品的此比值较高,数据主要分布在Ⅰ—Ⅱ区域(图6)。从烃源岩样品的正构烷烃分布来看,J2 d 5样品主要以高碳数的“单峰型”为主,且表现出明显的奇偶优势[图7(a)—图7(c)],说明有机质可能主要来自陆生高等植物;而J2 d 7样品则主要以“双峰型”为主,具有典型的高等植物—水生植物混源特征且奇偶优势较弱[图7(d),图7(e)],并且少数样品主峰碳较低属于“单峰型”[图7(f)]。以上指标的对比可以发现,J2 d 5有机质属于Ⅱ型—Ⅲ型,以生气为主,而J2 d 7有机质属于Ⅰ型—Ⅱ型,有机质类型更好而趋向于生油。
图4 J2烃源岩有机质类型判识图版

注:鱼卡凹陷部分数据来自文献[71550];红山凹陷部分数据来自文献[22

Fig.4 Chart for identifying organic matter types of J2 source rocks

图5 J2烃源岩干酪根显微组分

(a)J2 d 5;(b)J2 d 7

Fig.5 Kerogen macerals of J2 source rocks

图6 基于氯仿沥青“A”族组分的J2烃源岩生烃母质类型解释图版

Fig.6 The identifying chart of hydrocarbon-generating parent material types based on the group components of chloroform bitumen “A” of the J2 source rocks

图7 J2代表性烃源岩样品正构烷烃分布

Fig.7 Distribution of n-alkanes in representative J2 source rock samples

不同凹陷中发育烃源岩类型同样存在差异。以J2 d 7为例,烃源岩热解图版中[图4(b)]小柴旦凹陷烃源岩样品主要位于Ⅰ—Ⅱ1区域,红山和鱼卡凹陷烃源岩样品在Ⅰ—Ⅱ2区域中均有分布,而霍布逊凹陷样品主要集中在Ⅲ区域。与之类似,小柴旦、红山和鱼卡凹陷烃源岩样品的干酪根显微组分中腐泥组含量较高(除鱼卡凹陷部分样品外均高于50%),而霍布逊凹陷烃源岩样品以镜质组和惰质组为主[图5(b)]。氯仿沥青“A”的饱芳比数据显示,鱼卡凹陷与红山凹陷相比数值相对较高(图6)。从典型样品的正构烷烃分布来看,小柴旦凹陷属于“单峰型”且主峰碳碳数较低[图7(f)],而红山凹陷和鱼卡凹陷样品属于混源的“双峰型”[图7(d),图7(e)]。综合比较可以发现,柴北缘东段5个凹陷按照J2 d 7烃源岩类型可以划分为3个类别,其中小柴旦凹陷类型相对较好(主要属于Ⅰ型和Ⅱ1型干酪根),鱼卡凹陷和红山凹陷次之(Ⅰ型和Ⅱ2型干酪根之间均有分布),霍布逊和德令哈凹陷类型最差(均属于Ⅱ型和Ⅲ型干酪根,其中德令哈凹陷结论见文献[25])。

3.3 有机质成熟度

烃源岩有机质的丰度高低和类型差别控制了生油气的物质基础和产物类型,有机质的成熟度则是判断烃源岩是否达到生烃门限的标准56。通过上述关于有机质丰度和有机质类型的分析可以发现,与柴北缘东段J2 d 5相比,J2 d 7有机质丰度和类型指标均要更好,属于柴北缘东段的主力烃源岩,因此成熟度评价中主要以后者作为研究对象。此处将镜质体反射率R O作为评价成熟度的主要指标,同时用烃源岩热解峰温T max作为参考指标(图4图8表1)。
图8 J2 d 7烃源岩镜质体反射率(R O)分布范围

Fig.8 Distribution range of vitrinite reflectance values(R O) of J2 d 7 source rocks

表1 不同凹陷内J2 d 7烃源岩热解峰温(T max)与镜质体反射率(R O)

Table 1 Pyrolysis peak temperature(T max) and vitrinite reflectance values(R O) of J2 d 7 source rock in different depressions

凹陷 T max/℃ R O/%
最小值 平均值 最大值 最小值 平均值 最大值
鱼卡凹陷 419.00 435.82 484.00 0.35 0.76 1.13 部分数据来自文献[71523
红山凹陷 408.00 430.16 465.00 0.53 0.87 1.18 部分数据来自文献[22
霍布逊凹陷 422.60 430.24 451.00 0.50 0.70 0.96
小柴旦凹陷 434.00 436.82 440.00 0.42 0.50 0.63
德令哈凹陷 429.00 443.00 0.82 0.83 0.83 数据来自文献[1825
参考前人提出的烃源岩成熟度的R O划分标准,可以看出柴北缘东段不同凹陷内J2 d 7烃源岩的成熟度差异较大(图8)。其中红山凹陷烃源岩R O值处于0.53%~1.18%之间,平均值为0.87%,整体位于成熟阶段;德令哈凹陷与红山凹陷类似,R O平均值为0.825%也处于成熟阶段;鱼卡凹陷烃源岩R O值分布较为分散,分布在0.35%~1.13%之间,平均值为0.77%,从平均值分析整体处于成熟阶段;霍布逊凹陷烃源岩稍低,R O值分布范围为0.50%~0.99%,平均值为0.7%。但霍布逊凹陷该区域样品主要来自凹陷边缘的煤田钻孔和野外露头(花石沟、达山及HB9-2钻孔,见图1),在凹陷中心钻探的诺参2井中J2 d 7深度达到了5 000 m,按照柴北缘生烃门限的深度推测凹陷内部烃源岩很有可能已经达到了成熟甚至进入了过成熟生气阶段357-59。小柴旦凹陷样品成熟度最低,处于未成熟—成熟阶段,R O值分布范围为0.42%~0.63%,平均值为0.5%。通过以上对比可以发现,柴北缘东段5个凹陷中除小柴旦凹陷成熟度较低和鱼卡凹陷成熟度数据较为分散之外,其余3个凹陷均达到了成熟生油气阶段,有较强的勘探潜力。

3.4 综合评价

综合以上数据可以看出,侏罗系烃源岩在柴达木盆地北缘东段J2 d 5和J2 d 7均有发育,其中J2 d 5以煤系烃源岩为主,J2 d 7以深灰色泥岩为主且部分区域发育较好的油页岩。J2 d 5烃源岩质量较差,有机质丰度较为分散,在差—优质范围内均有分布,干酪根类型主要为Ⅱ2型和Ⅲ型,以生气为主而生油能力较差。柴北缘东段主力烃源岩发育在J2 d7 中,整体属于中等—优质烃源岩,有机质丰度较高,干酪根以Ⅰ型和Ⅱ2型为主,具有较强的生油能力,热演化程度基本达到了成熟阶段(除小柴旦和鱼卡凹陷外,R O平均值均在0.7%~0.8%之间)。不同凹陷中主力烃源岩质量具有明显的空间分布差异,综合评价结果如表2所示:其中红山凹陷质量最好(丰度达到好—优质级别,类型处于Ⅰ型和Ⅱ2型之间,热演化达到成熟阶段),鱼卡凹陷与小柴旦凹陷次之(丰度和类型较好,但成熟度较差),霍布逊凹陷和德令哈凹陷总体较差(丰度较低,烃源岩类型主要以Ⅲ型为主)。其中需要特别指出的是,霍布逊凹陷和德令哈凹陷的勘探水平较低,现有数据集中在凹陷边缘的野外露头和煤田钻孔,随着实际勘探的不断拓展,烃源岩质量有待进一步研究。
表2 柴北缘东段侏罗系凹陷J2 d 7烃源岩综合评价表

Table 2 Comprehensive evaluation table of J2 d 7 source rocks in Jurassic depressions in the eastern section of northern margin of the Qaidam Basin

凹陷 丰度(TOC,平均值)/% 类型 成熟度(R O)/% 综合评价等级
红山凹陷 5.80 Ⅰ—Ⅱ2 0.53~1.18 1
鱼卡凹陷 5.68 Ⅰ—Ⅱ2 0.35~1.13 2
小柴旦凹陷 4.24 Ⅰ—Ⅱ1 0.42~0.63 2
霍布逊凹陷 2.13 Ⅱ—Ⅲ 0.50~0.96 3
德令哈凹陷 差—优质,数据较少 Ⅱ—Ⅲ25 0.82~0.83 3

4 讨论

通过上述分析可以发现,柴北缘东段不同侏罗系凹陷中发育的烃源岩丰度、类型和成熟度均存在一定的差异。由于烃源岩有机质的丰度、类型与成熟度分别与烃源岩沉积环境和沉积之后的构造埋藏历史有关,因此下文将对二者分别进行讨论。

4.1 有机质丰度及类型的控制因素

柴北缘东段5个侏罗纪凹陷中,德令哈凹陷资料较少,其余4个凹陷中鱼卡、红山和小柴旦凹陷烃源岩质量较好(丰度均达到好—优质级别,类型分布在Ⅰ型—Ⅱ2型之间),而唯独霍布逊凹陷烃源岩质量较差(丰度位于差—优质之间,主要为Ⅲ型干酪根)。从基于三维地震及重点钻井数据绘制的柴北缘东段J2 d 7沉积厚度分布图(图9)来看,霍布逊凹陷地层与鱼卡、红山和小柴旦凹陷相比要更薄,同时诺参2井揭示凹陷内部发育以其为中心的低凸起,将凹陷分割为东、西2个次凹,分布较为局限47。此外在J2 d 7沉积时期霍布逊凹陷内部仅发育滨湖—沼泽沉积等浅水沉积(图1046。与之相比,鱼卡、红山、小柴旦凹陷J2 d 7相对较厚(图9),在凹陷中心的浅湖—半深湖环境中沉积了厚层暗色泥岩(图10)。综上讨论可以发现,霍布逊凹陷与其他地区在J2 d 7沉积时期地层厚度与沉积环境有较大差异,而沉积环境可能是导致烃源岩质量差异的主要因素。霍布逊凹陷滨湖—沼泽沉积等浅水沉积中发育的有效烃源岩厚度小,生烃母质可能主来自此环境下发育的高等植物,并且埋藏保存条件差;而鱼卡、红山、小柴旦凹陷在浅湖—半深湖环境下发育的暗色泥岩厚度大,良好的深水还原条件中较好地保存了藻类等水生植物,进而导致了烃源岩质量的巨大差异。针对柴北缘侏罗纪原型盆地恢复及沉积体系划分等问题本课题组近年来进行了大量研究,上述厚度及沉积相部分是在前期已经发表成果的基础上进一步完善形成的4660-62,受限于本文研究重点及篇幅限制,此处对基础资料不再详细介绍。
图9 柴北缘东段J2 d 7残余地层厚度(据文献[45]修改)

Fig.9 The residual strata thickness map of J2 d 7 in the eastern section of northern margin of the Qaidam Basin (modified from ref.[45])

图10 柴北缘东段J2剖面地层与沉积对比(据文献[46]修改)

Fig.10 Stratigraphic and sedimentary correlation diagram of J2 in the eastern section of northern margin of the Qaidam Basin (modified from Ref.[46])

4.2 烃源岩成熟度差异的控制因素

烃源岩的丰度与类型受到沉积环境的控制,烃源岩成熟度则主要是沉积埋藏后期的热演化过程导致的结果。如果凹陷内的沉积物持续埋藏那么热演化过程持续进行而导致成熟度较高,如果埋藏后期地层又折返抬升则热演化过程中止成熟度不会继续升高。柴北缘东段不同凹陷中J2 d 7烃源岩的成熟度差异也与构造活动在区域上的差异性有关。
前人3762-65通过构造物理及数值模拟、平衡地质剖面恢复、磷灰石裂变径迹等手段对柴北缘东段的盆山演化历史进行了较为详细的恢复,将现今的凹陷分为持续沉降型和构造反转型2种类型:其中霍布逊、红山、德令哈凹陷属于持续沉降型凹陷,而鱼卡凹陷和小柴旦凹陷属于构造反转型凹陷314566-68。2种凹陷的构造历史截然相反,导致前者的成熟度要明显高于后者。构造反转型凹陷以小柴旦凹陷为代表[图11(a)],其中J2 d 7烃源岩在白垩系沉积后期经历了持续的构造抬升并在新近纪末达到最大埋深,最终使得烃源岩持续处于低成熟演化阶段3168。持续沉降型凹陷以霍布逊凹陷为代表[图11(b)],这一地区从中侏罗世开始接受沉积并发育了烃源岩,喜马拉雅运动晚期凹陷北部的埃姆尼克山持续隆升,而霍布逊凹陷位于逆冲断层下盘埋深持续增大,烃源岩也进入生烃门限热演化程度不断增加持续生烃45
图11 小柴旦凹陷和霍布逊凹陷埋藏史曲线

(a)构造反转低熟型烃源岩热演化过程68;(b)持续埋藏高成熟型烃源岩热演化过程

Fig.11 Burial history curve of Xiaochaidan and Huobuxun depressions

5 结论

(1)柴北缘东段侏罗系烃源岩主要在中侏罗统大煤沟组五段和大煤沟组七段中发育,其中大煤沟组五段烃源岩以煤系烃源岩为主,而大煤沟组七段以暗色泥页岩为主。其中大煤沟组七段中发育的暗色泥岩有机质丰度高,类型属于Ⅰ型—Ⅱ型,有较好的生油气潜力。
(2)柴北缘东段5个侏罗系生烃凹陷中发育的烃源岩质量各有差异,以大煤沟组七段为例,其中红山凹陷烃源岩质量最好,有机质丰度达到好—优质级别,有机质类型处于Ⅰ型和Ⅱ2之间,有机质热演化达到成熟阶段,有望成为下一步增储上产的重点凹陷区块;鱼卡与小柴旦凹陷次之,但成熟度较差;霍布逊和德令哈凹陷总体质量较差,有机质丰度较低并且干酪根主要以Ⅲ型为主。
(3)不同凹陷内大煤沟组七段烃源岩的丰度和类型主要受控于沉积环境。其中霍布逊凹陷在大煤沟组七段沉积时期发育滨湖—沼泽沉积,而红山、小柴旦和鱼卡凹陷发育浅湖—半深湖沉积,因此导致前者烃源岩丰度和类型较差。
(4)柴北缘东段不同凹陷构造活动历史的差异性控制了烃源岩的成熟度。其中霍布逊、红山、德令哈凹陷属于持续沉降型凹陷,而赛南断裂上盘的鱼卡凹陷和小柴旦凹陷属于构造反转型凹陷,导致前者发育的烃源岩现今成熟度高而后者成熟度相对较低。
1
付锁堂.柴达木盆地天然气勘探领域[J].中国石油勘探,2014,19(4):1-10.

FU S T. Natural gas exploration in Qaidam Basin[J]. China Pe-troleum Exploration,2014,19(4):1-10.

2
田继先,李剑,曾旭,等.柴达木盆地东坪地区原油裂解气的发现及成藏模式[J].石油学报,2020,41(2):154-162,225.

TIAN J X, LI J, ZENG X, et al. Discovery and accumulation model of oil cracking gas reservoirs in Dongping area, Qaidam Basin[J]. Acta Petrolei Sinica,2020,41(2):154-162,225.

3
GUO Z Q, XIE Z Y, LI J, et al. Resource potential of the Jurassic gas system, northern margin of the Qaidam Basin, northwestern China[J].AAPG Bulletin,2021,105(5):883-917.

4
党玉琪,胡勇,余辉龙,等.柴达木盆地北缘石油地质[M].北京:地质出版社,2003.

DANG Y Q, HU Y, YU H L, et al. Petroleum Geology in the Northern Margin of Qaidam Basin[M]. Beijing: Geological Publishing House, 2003.

5
彭立才,杨慧珠,刘兰桂,等.柴达木盆地北缘侏罗系烃源岩沉积有机相划分及评价[J].石油与天然气地质,2001,22(2):178-181.

PENG L C, YANG H Z, LIU L G, et al. Classification and estimation of organic facies in Jurassic source rocks from north margin,Chaidamu Basin[J]. Oil & Gas Geology,2001,22(2):178-181.

6
付玲,张子亚,张道伟,等.柴达木盆地北缘侏罗系烃源岩差异性研究及勘探意义[J].天然气地球科学,2010,21(2):218-223.

FU L, ZHANG Z Y, ZHANG D W, et al. Difference between Middle and Lower Jurassic source rocks in northern margin of Qaidam Basin and potential exploration significances[J]. Natural Gas Geoscience,2010,21(2):218-223.

7
刘云田,杨少勇,胡凯,等.柴达木盆地北缘中侏罗统大煤沟组七段烃源岩有机地球化学特征及生烃潜力[J].高校地质学报,2007,13(4):703-713.

LIU Y T, YANG S Y, HU K, et al. Organic geochemical features of mudstone source rock from member 7 strata of Middle Jurassic age in the northern margin of Qaidam Basin and its hydrocarbon-generation potential[J].Geological Journal of China Universities,2007,13(4):703-713.

8
田继先,李剑,曾旭,等.柴北缘深层天然气成藏条件及有利勘探方向[J].石油与天然气地质,2019,40(5):1095-1105.

TIAN J X, LI J, ZENG X, et al. Accumulation conditions and favorable plays for deep gas exploration at the northern margin of Qaidam Basin[J]. Oil & Gas Geology,2019,40(5):1095-1105.

9
何盼情.马海东及周缘地区Pt-E3g地层压力特征及超压成因[D].西安:西安石油大学,2021.

HE P Q. Formation Pressure Characteristics and Overpressure Genesis of Pt-E3 1 Formation in Mahaidong and its Surrounding Areas[D]. Xi’an: Xi'an Shiyou University,2021.

10
李军亮.柴北缘马海东地区元古界基岩储层发育特征及控制因素[J].油气地质与采收率,2022,29(2):15-22.

LI J L. Characteristics and controlling factors of reservoirs in Proterozoic bedrock in Mahaidong area,northern margin of Qaidam Basin[J]. Petroleum Geology and Recovery Efficiency,2022,29(2):15-22.

11
柳忠泉,陈云锋,张俊锋,等.柴北缘马海东地区双向逆冲地质结构及油气地质意义[J].科学技术与工程,2019,19(5):47-54.

LIU Z Q, CHEN Y F, ZHANG J F, et al. Two-way-thrusting geological structure and petroleum geological significance in Mahaidong area of northern margin of Qaidam Basin[J]. Science Technology and Engineering,2019,19(5):47-54.

12
陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29.

LU G Q, YANG S C, ZHANG Y F, et al. Pore structure characteristics and their controlling factors of sandstone reservoirs in the Lower Xiaganchaigou Formation in Mahaidong area[J]. Petroleum Geology & Oilfield Development in Daqing, 2021,40(2):20-29.

13
任收麦,包书景,张毅,等.柴达木盆地北缘侏罗系页岩气地质条件[J].地质通报,2016,35(2):204-210.

REN S M, BAO S J, ZHANG Y, et al. Geological conditions of the Jurassic shale gas on the northern margin of Qaidam Basin[J]. Geological Bulletin of China,2016,35(2):204-210.

14
ZHANG Y P, LI Y H, GUO W, et al. Differential evolution and the influencing factors of low-maturity terrestrial shale with different types of kerogen: A case study of a Jurassic shale from the northern margin of Qaidam Basin, China[J]. International Journal of Coal Geology,2020,230:103591.

15
康志宏,周磊,任收麦,等.柴北缘中侏罗统大煤沟组七段泥页岩储层特征[J].地学前缘,2015,22(4):265-276.

KANG Z H, ZHOU L, REN S M, et al. Characteristics of shale of the 7th member of the Middle Jurassic Dameigou Formation in northern Qaidam Basin[J]. Earth Science Frontiers,2015,22(4):265-276.

16
翟志伟.柴北缘鱼卡凹陷侏罗纪含煤岩系生烃潜力分析[J].山西能源学院学报,2018,31(5):128-130.

ZHAI Z W. Hydrocarbon generation potential analysis of Jurassic coal-bearing rock series in Yuka Depression, northern margin of Qaidam Basin[J]. Journal of Shanxi Coal-Mining Admi-nistrators College,2018,31(5):128-130.

17
方朝刚,李凤杰,孟立娜,等.柴达木盆地北缘红山断陷中侏罗统烃源岩评价[J].天然气地球科学,2012,23(5):856-861.

FANG C G, LI F J, MENG L N, et al. Evaluation of Middle Jurassic hydrocarbon source rocks in Hongshan Sag,northern Qai-dam Basin[J]. Natural Gas Geoscience,2012,23(5):856-861.

18
付小东,饶丹,秦建中,等.柴达木盆地北缘地区中侏罗统大煤沟组页岩油形成地质条件[J].岩性油气藏,2014,26(6):20-27,33.

FU X D, RAO D, QIN J Z, et al. Geological conditions for shale oil forming of Middle Jurassic Dameigou Formation in the northern margin of Qaidam Basin[J].Lithologic Reservoirs,2014,26(6):20-27,33.

19
郭天旭,任收麦,包书景,等.柴达木盆地北缘中侏罗统大煤沟组泥页岩吸附特征及其影响因素[J].地质科技情报,2018,37(6):181-187.

GUO T X, REN S M, BAO S J, et al. Adsorption characteristics and influence factors of Middle Jurassic Dameigou Formation shale in northern Qaidam Basin[J].Geological Science and Technology Information,2018,37(6):181-187.

20
胡勇,刘平,曹海防.柴北缘侏罗系烃源岩地球化学特征及其综合评价[J].大地构造与成矿学,2004,28(4):464-469.

HU Y, LIU P, CAO H F. Geochemical characteristics and hydrocarbon generation capability of the Jurassic hydrocarbon source rock on the northern edge of Qaidam Basin[J]. Geotectonica et Metallogenia,2004,28(4):464-469.

21
刘世明,唐书恒,马长政,等.鱼卡凹陷石门沟组上段泥页岩地球化学及储层特征[J].煤炭学报,2020,45(3):1125-1136.

LIU S M, TANG S H, MA C Z, et al. Geochemistry and reservoir characteristics of shale in the upper member of Shimengou Formation, Yuka Sag[J]. Journal of China Coal Society,2020,45(3):1125-1136.

22
汤艳,张云鹏,李永红.柴北缘大煤沟组七段(J2d7)页岩油资源潜力评价——以大煤沟地区为例[J].中国地质,2016,43(2):575-584.

TANG Y, ZHANG Y P, LI Y H. The potential evaluation of shale oil in the seventh member of Dameigou Formation(J2d7) on the northern margin of Qaidam Basin: A case study of Dameigou area[J]. Geology in China,2016,43(2):575-584.

23
王君贤,刘招君,孙平昌,等.柴北缘鱼卡地区中侏罗统油页岩类型及成矿差异[J].大庆石油地质与开发,2017,36(4):168-174.

WANG J X, LIU Z J, SUN P C, et al. Types and mineralizing differences for Middle Jurassic oil shale in Yuqia Region of north margin in Qaidam Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2017,36(4):168-174.

24
阎存凤,袁剑英,陈启林,等.柴达木盆地北缘东段大煤沟组一段优质烃源岩[J].石油学报,2011,32(1):49-53.

YAN C F, YUAN J Y, CHEN Q L, et al. Discovery of the high-quality source rock of the first member of Dameigou Formation in the east part of the northern Qaidam Basin[J]. Acta Petrolei Sinica,2011,32(1):49-53.

25
陈迎宾,张寿庭.柴达木盆地德令哈拗陷中侏罗统烃源岩有机地球化学特征[J].成都理工大学学报(自然科学版), 2011,38(2):191-198.

CHEN Y B, ZHANG S T. Organic geochemical characteristics of Middle Jurassic hydrocarbon source rocks in Delingha Depression of Qaidam Basin[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2011,38(2):191-198.

26
付小东,邱楠生,饶丹,等.柴达木盆地北缘侏罗系页岩油气成藏条件地质地球化学分析[J].地球化学,2014,43(5):437-452.

FU X D, QIU N S, RAO D, et al. Geological and geochemical analyses on accumulation conditions of shale oil and gas in Jurassic strata of the north margin of the Qaidam Basin[J].Geo-chimica,2014,43(5):437-452.

27
黄成刚,陈启林,阎存凤,等.柴达木盆地德令哈地区油气资源潜力评价[J].断块油气田,2008,15(2):4-7.

HUANG C G, CHEN Q L, YAN C F, et al. Evaluation of oil and gas resource potential in Delingha area of Qaidam Basin[J]. Fault-Block Oil and Gas Field,2008,15(2):4-7.

28
彭德华,陈启林,陈迎宾.柴达木盆地德令哈坳陷基本地质特征与油气资源潜力评价[J].中国石油勘探,2006,11(6):45-50,130.

PENG D H,CHEN Q L,CHEN Y B. Evaluation of geologic features and potential petroleum resource in Delingha Depression of Qaidam Basin[J]. China Petroleum Exploration, 2006,11(6):45-50,130.

29
孙波,王大华,刘俊民,等.柴达木盆地霍布逊凹陷油气成藏条件与成藏模式[J].中国石油和化工标准与质量,2021,41(4):154-156.

SUN B,WANG D H, LIU J M, et al. Hydrocarbon accumulation conditions and accumulation models in Hobsun Depression, Qaidam Basin[J].China Petroleum and Chemical Standard and Quality,2021,41(4):154-156.

30
翟志伟,张永庶,杨红梅,等.柴达木盆地北缘侏罗系有效烃源岩特征及油气聚集规律[J].天然气工业,2013,33(9):36-42.

ZHAI Z W, ZHANG Y S, YANG H M, et al. Characteristics of effective source rocks in the Jurassic and hydrocarbon accumulation patterns in the areas near the northern margin of the Qaidam Basin[J]. Natural Gas Industry,2013,33(9):36-42.

31
孙波,王金铎,王大华,等.柴北缘东段中—新生代构造演化及其对油气的控制作用[J].中国石油勘探, 2019,24(3):351-360.

SUN B, WANG J D, WANG D H, et al. Mesozoic-Cenozoic structural evolution and its control over oil and gas in the eastern section of the northern margin of the Qaidam Basin[J]. China Petroleum Exploration,2019,24(3):351-360.

32
陈志勇,肖安成,周苏平,等.柴达木盆地侏罗系分布的主控因素研究[J].地学前缘,2005,12(3):149-155.

CHEN Z Y, XIAO A C, ZHOU S P, et al. The main control factor for Jurassic distribution in Qaidam Basin[J]. Earth Science Frontiers,2005,12(3):149-155.

33
代昆,刘成林,肖敦清,等.柴达木盆地欧龙布鲁克地区构造演化研究[J].地学前缘,2016,23(5):33-44.

DAI K, LIU C L, XIAO D Q, et al. The tectonic deformation and evolution of the Olongbluke area in eastern Qaidam Basin[J]. Earth Science Frontiers,2016,23(5):33-44.

34
肖安成,陈志勇,杨树锋,等.柴达木盆地北缘晚白垩世古构造活动的特征研究[J].地学前缘,2005,12(4):451-457.

XIAO A C, CHEN Z Y, YANG S F, et al. The study of Late Cretaceous paleostructural characteristics in northern Qaidam Basin[J]. Earth Science Frontiers,2005,12(4):451-457.

35
杨永泰,张宝民,席萍,等.柴达木盆地北缘侏罗系展布规律新认识[J].地层学杂志,2001,25(2):154-159.

YANG Y T, ZHANG B M, XI P, et al. New knowledge about distribution of the Jurassic strata along north margin of Chaidamu Basin[J]. Journal of Stratigraphy,2001,25(2):154-159.

36
金之钧,张明利,汤良杰,等.柴达木中新生代盆地演化及其控油气作用[J].石油与天然气地质,2004,25(6):603-608.

JIN Z J, ZHANG M L, TANG L J, et al. Evolution of Meso-Cenozoic Qaidam Basin and its control on oil and gas[J]. Oil & Gas Geology,2004,25(6):603-608.

37
商琳,戴俊生,杨学君,等.柴北缘东段构造应力场数值模拟及构造演化模式探讨[J].高校地质学报,2014,20(2):260-267.

SHANG L, DAI J S, YANG X J, et al. Numerical simulation of the tectonic stress field and tectonicevolution pattern of the eastern section of North Qaidam[J]. Geological Journal of China Universities,2014,20(2):260-267.

38
肖安成,杨树锋,程晓敢,等.柴达木盆地北缘的右行走滑冲断系统及其动力学[J].石油与天然气地质,2006,27(4):482-487.

XIAO A C, YANG S F, CHENG X G, et al. Right-lateral strike-slip thrust system and its dynamics along the northern margin of Qaidam Basin[J]. Oil & Gas Geology,2006,27(4):482-487.

39
赵凡,孙德强,闫存凤,等.柴达木盆地中新生代构造演化及其与油气成藏关系[J].天然气地球科学,2013,24(5):940-947.

ZHAO F,SUN D Q,YAN C F, et al. Meso-cenozoic tectonic evolution of Qaidam Basin and its relationship with oil and gas accumulation[J]. Natural Gas Geoscience,2013,24(5):940-947.

40
程荣,肖永军,林会喜,等.柴达木盆地北缘东段石炭系残留分布及控制因素[J].地学前缘,2016,23(5):75-85.

CHENG R, XIAO Y J, LIN H X, et al. A study of Carboniferous stratigraphic distribution and controlling factors in the eastern section of North Qaidam[J]. Earth Science Frontiers,2016,23(5):75-85.

41
曾联波,金之钧,张明利,等.柴达木侏罗纪盆地性质及其演化特征[J].沉积学报,2002,20(2):288-292.

ZENG L B, JIN Z J, ZHANG M L, et al. The Jurassic basin type and its evolution characteristic in Qaidam Basin[J]. Acta Sedimentologica Sinica,2002,20(2):288-292.

42
段宏亮,钟建华,马锋,等.柴达木盆地西部中生界原型盆地及其演化[J].地球学报,2007,28(4):356-368.

DUAN H L, ZHONG J H, MA F, et al. Prototypes and evolution of the Mesozoic basin in western Qaidam[J]. Acta Geoscientica Sinica,2007,28(4):356-368.

43
李伟,刘宝珺,白淑艳.柴达木盆地侏罗系地层沉积大迁移及成因分析[J].石油学报,2002,23(6):16-19.

LI W, LIU B J, BAI S Y. Great transposition and origin of Jurassic sedimentary in Qaidam Basin[J]. Acta Petrolei Sinica, 2002,23(6):16-19.

44
汪立群,徐凤银,庞雄奇,等.马海—大红沟凸起油气勘探成果与柴达木盆地北缘的勘探方向[J].石油学报,2005,26(3):21-25.

WANG L Q, XU F Y, PANG X Q, et al. Potential exploration targets of the northern margin of Qaidam Basin suggested from the breakthrough of Mahai-Dahonggou Uplift[J]. Acta Petrolei Sinica,2005,26(3):21-25.

45
李军亮,肖永军,王大华,等.柴达木盆地东部侏罗纪原型盆地恢复[J].地学前缘,2016,23(5):11-22.

LI J L, XIAO Y J, WANG D H, et al. Jurassic prototype basin reconstruction in east part of Qaidam Basin[J]. Earth Science Frontier,2016,23(5):11-22.

46
呼其图,关平,王大华,等.柴达木盆地北缘东段中侏罗统物源分析——来自重矿物、元素地球化学及碎屑锆石年代学的证据[J/OL].沉积学报, 2022:1-25. DOI:10.14027/j.issn.1000-0550.2022.044.

HU Q T,GUAN P,WANG D H,et al.Provenance analysis of the Middle Jurassic in northeastern Qaidam Basin:Evidence from heavy minerals,elemental geochemistry and detrital zircon U-Pb geochronology[J]. Acta Sedimentologica Sinica,2022:1-25. DOI:10.14027/j.issn.1000-0550.2022.044.

47
李军亮,肖永军,林武,等.柴达木盆地东部地区中、下侏罗统残留分布及控制因素[J].天然气地球科学,2015,26(10):1893-1900.

LI J L,XIAO Y J,LIN W, et al. Distribution and controlling factors of remnant Middle-Lower Jurassic in the eastern Qaidam Basin[J]. Natural Gas Geoscience,2015,26(10):1893-1900.

48
颜小宁.柴达木盆地胜利区块中下侏罗统烃源岩控制因素与发育特征[J].油气地质与采收率,2011,18(3):36-38.

YAN X N. Study on control factors and development features of Middle-Lower Jurassic hydrocarbon source rocks,Shengli area, Qaidam Basin[J]. Petroleum Geology and Recovery Efficiency,2011,18(3):36-38.

49
吴因业,宋岩,贾承造,等.柴北缘地区层序格架下的沉积特征[J].地学前缘,2005,12(3):195-203.

WU Y Y, SONG Y, JIA C Z, et al. Sedimentary features in a sequence stratigraphic framework in the north area of Qaidam Basin[J]. Earth Science Frontiers,2005,12(3):195-203.

50
谢文泉,贾建亮,刘招君.柴达木盆地北缘中侏罗统石门沟组煤中多环芳烃分布特征及其地质意义[J/OL].地质学报,2022:1-15. DOI:10.19762/j.cnki.dizhixuebao.2022049.

XIE W Q, JIA J L, LIU Z J. Distribution and geological significance of polycyclic aromatic hydrocarbons in the coal from Shimengou Formation of Middle Jurassic in the northern Qaidam Basin[J/OL]. Acta Geologica Sinica, 2022:1-15. DOI:10.19762/j.cnki.dizhixuebao.2022049.

51
陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5,91.

CHEN J P, ZHAO C Y, HE Z H. Criteria for evaluating the hydrocarbon generating potential of organic matter in coal measures[J]. Petroleum Exploration and Development,1997,24(1):1-5,91.

52
陈建平,赵长毅,王兆云,等.西北地区侏罗纪煤系烃源岩和油气地球化学特征[J].地质论评,1998,44(2):149-159.

CHEN J P, ZHAO C Y, WANG Z Y, et al. Organic geochemical characteristics of oil, gas and source rocks of Jurassic coal measures in northwestern China[J]. Geological Review,1998,44(2):149-159.

53
马风华,潘进礼,马瑞赟,等.六盘山盆地马东山组低熟泥页岩有机质类型划分[J].天然气地球科学,2019,30(9):1370-1377.

MA F H, PAN J L, MA R Y, et al. Division of immature mudshale organic type of Madongshan Formation in Liupanshan Basin[J]. Natural Gas Geoscience,2019,30(9):1370-1377.

54
施辉,李宗星,彭博,等.柴达木盆地欧南凹陷上石炭统克鲁克组海陆过渡型烃源岩有机质组成及生烃特征[J].地质学报,2023,97(1):179-196.

SHI H, LI Z X, PENG B, et al. The organic matter composition and hydrocarbon generation characteristics of the marine-continental transitional source rocks in the Upper Carboniferous Keluke Formation,Ounan Depression,Qaidam Basin[J]. Acta Geologica Sinica,2023,97(1):179-196.

55
陈建平,王绪龙,邓春萍,等.准噶尔盆地烃源岩与原油地球化学特征[J].地质学报,2016,90(1):37-67.

CHEN J P, WANG X L, DENG C P, et al. Geochemical features of source rocks and crude oil in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica,2016,90(1):37-67.

56
张贺,姜正龙,李雅君,等.塔里木盆地瓦石峡凹陷下侏罗统康苏组生烃条件及与邻区的对比[J].现代地质,2019,33(6):1241-1251.

ZHANG H, JIANG Z L, LI Y J, et al. Hydrocarbon generation conditions and regional comparison of the Lower Jurassic Kangsu Formation in Washixia Sag, Tarim Basin[J]. Geoscience,2019,33(6):1241-1251.

57
刘成林,张禹,杨晟颢,等.海相低勘探程度地区油气资源评价:以柴达木盆地德令哈坳陷石炭系为例[J].地学前缘,2021,28(1):295-307.

LIU C L, ZHANG Y, YANG S H, et al. Marine frontier basin petroleum resources assessment: A case study of the Carboniferous of the Delingha Depression,Qaidam Basin[J].Earth Science Frontier,2021,28(1):295-307.

58
王玉华,侯启军,孙德君,等.柴达木盆地北缘地区中新生代地层油气生成与资源评价[M].北京:科学出版社,2004.

WANG Y H, HOU Q J, SUN D J, et al. Hydrocarbon Generation and Resource Evaluation of Meso-Cenozoic Strata in the Northern Margin of Qaidam Basin[M]. Beijing: Science Press, 2004.

59
马达德,袁莉,陈琰,等.柴达木盆地北缘天然气地质条件、资源潜力及勘探方向[J].天然气地球科学,2018,29(10):1486-1496.

MA D D, YUAN L, CHEN Y, et al. Geological conditions of natural gas, resource potential and exploration direction in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2018,29(10):1486-1496.

60
JIAN X, FU L, WANG P, et al. Sediment provenance of the Lulehe Formation in the Qaidam Basin: Insight to initial Cenozoic deposition and deformation in northern Tibetan plateau[J]. Basin Research,2023,35:271-294.

61
JIAN X, GUAN P, ZHANG W, et al. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: Implications for provenance and weathering[J]. Chemical Geology,2013,360-361:74-88.

62
JIAN X, GUAN P, ZHANG W, et al. Late Cretaceous to Early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam Basin[J]. Gondwana Research, 2018,60:94-104.

63
李宗星,邱楠生,马寅生,等.柴达木盆地东部古生代以来构造—热演化[J].地学前缘,2017,24(3):157-167.

LI Z X, QIU N S, MA Y S, et al. The tectono-thermal evolution in the eastern Qaidam Basin, Northwest China since the Paleozoic[J]. Earth Science Frontiers,2017,24(3):157-167.

64
陈思远,张永庶,吴磊,等.柴达木盆地北缘鱼卡—九龙山地区新生代构造变形特征[J].石油勘探与开发,2020,47(1):110-119.

CHEN S Y, ZHANG Y S, WU L, et al. Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam Basin,China[J].Petroleum Exploration and Development,2020,47(1):110-119.

65
孙波,王金铎,肖永军,等.柴北缘东段中、新生代构造物理模拟研究[J].科学技术与工程,2016,16(19):37-44.

SUN B, WANG J D, XIAO Y J, et al. Meso-cenozoic tectonic structural physical simulation research of the eastern section of North Qaidam Basin[J]. Science Technology and Engineering,2016,16(19):37-44.

66
李生喜.柴达木盆地北缘盆山耦合机制:来自裂变径迹的证据[D].兰州:兰州大学,2010.

LI S X. Basin-mountain Coupling Mechanism of the Northern Margin of Qaidam Basin: Evidence from Fission-track Thermochronology[D]. Lanzhou:Lanzhou University, 2010.

67
王大华,王金铎,肖永军,等.柴北缘大柴旦地区山前带构造建模及演化研究[J].地学前缘,2016,23(5):1-10.

WANG D H, WANG J D, XIAO Y J, et al. Structure modeling and evolution of piedmont zone in Dachaidan area,north margin of Qaidam Basin[J]. Earth Science Frontiers,2016,23(5):1-10.

68
于永利.柴达木盆地小柴旦地区构造演化对烃源岩热演化的控制作用[J].科学技术与工程,2019,19(18):156-163.

YU Y L. The controlling effect of tectonic evolution on source rock thermal evolution in Xiaochaidan area in Qaidam Basin[J].Science Technology and Engineering,2019,19(18):156-163.

文章导航

/