天然气地质学

上扬子地区下寒武统牛蹄塘组富有机质页岩岩相及沉积环境分析——以贵州温水村剖面为例

  • 李丹龙 , 1 ,
  • 伏美燕 1, 2 ,
  • 邓虎成 1, 2 ,
  • 胥旺 1 ,
  • 刘四兵 1 ,
  • 吴冬 1
展开
  • 1. 成都理工大学能源学院,四川 成都 610059
  • 2. 成都理工大学油气藏地质及开发工程国家重点实验室,四川 成都 610059

李丹龙(1999-),男,四川大英人,硕士研究生,主要从事石油与天然气地质学研究. E-mail:.

收稿日期: 2022-07-04

  修回日期: 2022-10-11

  网络出版日期: 2023-03-23

Analysis of lithofacies and sedimentary environment of shale deposited in shelf facies: A case study of the Wenshuicun section in Guizhou Province, South China

  • Danlong LI , 1 ,
  • Meiyan FU 1, 2 ,
  • Hucheng DENG 1, 2 ,
  • Wang XU 1 ,
  • Sibing LIU 1 ,
  • Dong WU 1
Expand
  • 1. College of Energy,Chengdu University of Technology,Chengdu 610059,China
  • 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China

Received date: 2022-07-04

  Revised date: 2022-10-11

  Online published: 2023-03-23

Supported by

The National Science and Technology Major Project of China(2017ZX05036003-007)

the College Students Innovation and Entrepreneurship Training Program Project 2020-2021(202010616013)

摘要

贵州温水村剖面发育有一套完整的下寒武统牛蹄塘组富有机质黑色页岩,为厘清下寒武统牛蹄塘组页岩岩相类型,明确不同岩相形成环境特征,通过采集25块该剖面页岩样品,进行岩石薄片观察、X射线衍射(全岩)分析、总有机碳含量(TOC)测定及主微量和稀土元素分析,划分出温水村剖面下寒武统页岩的岩相类型,并明确了该层位页岩的沉积环境和有机质富集特征,建立了沉积模式。根据TOC值、沉积构造和矿物组成,同时考虑岩石脆性特征,共划分出9类页岩岩相:①富有机质块状强脆性硅质细粒岩;②富有机质纹层状强脆性硅质页岩;③高有机质块状强脆性硅质细粒岩;④高有机质纹层状强脆性硅质页岩;⑤高有机质块状中等脆性硅/黏土混合质细粒岩;⑥中有机质块状强脆性硅质细粒岩;⑦中有机质纹层状强脆性硅质页岩;⑧低有机质块状强脆性硅质细粒岩;⑨低有机质纹层状中脆性硅/黏土混合质页岩。其中,前5类页岩相形成于深水缺氧、暖湿型气候和以低温热水沉积作用为主的环境,初级生产力和古盐度较高,有机质富集受控于古氧化还原条件、古生产力、古盐度、古水深、暖湿型气候和热液活动,而其他岩相有机质富集则不受热液活动影响,沉积环境初级生产力和古盐度有所下降;建立了一个受氧化还原条件、古生产力、古盐度、热液活动及暖湿型气候影响的深水陆棚相沉积模式。

本文引用格式

李丹龙 , 伏美燕 , 邓虎成 , 胥旺 , 刘四兵 , 吴冬 . 上扬子地区下寒武统牛蹄塘组富有机质页岩岩相及沉积环境分析——以贵州温水村剖面为例[J]. 天然气地球科学, 2023 , 34(3) : 445 -459 . DOI: 10.11764/j.issn.1672-1926.2022.10.002

Abstract

A complete set of organic matter-rich black shale in the Lower Cambrian Niutitang Formation is developed in the Wenshuicun section of Guizhou Province,South China.In order to clarify the lithofacies types of shale in Lower Cambrian Niutitang Formation and clarify the formation environmental characteristics of different lithofacies,25 shale samples from this section were collected for thin section observation,X-ray diffraction (whole rock) analysis, total organic carbon content(TOC) determination,and major,trace and rare earth element analysis.The lithofacies types of the Lower Cambrian shale in the Wenshuicun section are divided,and the sedimentary model and organic matter enrichment characteristics of the shale in this layer are defined:①Organic-rich massive strongly brittle siliceous fine-grained rock;②Highly brittle organic laminated siliceous shale; ③High-organic massive strongly brittle siliceous fine-grained rock;④Highly organic laminated strongly brittle siliceous shale;⑤High-organic massive medium-brittle silica/clay mixed fine-grained rock;⑥Medium organic massive strongly brittle siliceous fine-grained rock;⑦Medium organic laminated strong brittle siliceous shale;⑧Low-organic massive strongly brittle siliceous fine-grained rock;⑨Low-organic laminated medium-brittle silica/clay mixed shale. According to TOC value,sedimentary structure and mineral composition,and considering the brittle characteristics of rocks,nine types of shale facies are divided.Among them,the first five types of shale facies were formed in deep-water anoxic,warm and humid climate and environment dominated by low-temperature hydrothermal sedimentation,with high primary productivity and paleo-salinity.The enrichment of organic matter was controlled by paleo-oxidation-reduction conditions,paleo-productivity,paleo-salinity,paleo-water depth,warm and humid climate and hydrothermal activities,while the enrichment of other lithofacies organic matter was not affected by hydrothermal activities,and the primary productivity and paleo-salinity of sedimentary environment decreased.A sedimentary model of deep-water shelf facies is established,which is affected by redox conditions,paleo-productivity,paleo-salinity,hydrothermal activities and warm and humid climate.

感谢中国石油化工股份有限公司胜利油田分公司勘探开发研究院石油地质测试中心对该研究数据测试提供的支持;感谢各位审稿专家对文章提出的建设性意见;感谢贵刊编辑社各位专家对文章提出的指正和修改意见。

1
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14.

ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry,2021,41(1):1-14.

2
赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44.

ZHAO W Z, JIA A L, WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration,2020,25(1):31-44.

3
董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1):19-32.

DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19-32.

4
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):689-701.

ZOU C N,DONG D Z,WANG Y M,et al.Shale gas in China:Characteristics,changes and prospects(I)[J].Petroleum Explo-ration and Development,2015,42(6):689-701.

5
杨振恒, 腾格尔, 李志明. 页岩气勘探选区模型 ——以中上扬子下寒武统海相地层页岩气勘探评价为例[J]. 天然气地球科学, 2011, 22(1):8-14.

YANG Z H, TENGER, LI Z M, et al. An example of shale gas selected marine area model of Lower Cambrian on the Middle and Upper Yangtze[J]. Natural Gas Geoscience,2011,22(1):8-14.

6
梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2):1-16.

LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1)[J]. Marine Origin Petroleum Geology,2008,13(2):1-16.

7
陈科洛, 张延山, 梁兴, 等. 滇黔北坳陷五峰组—龙马溪组下段页岩岩相与沉积环境[J]. 沉积学报,2018,36(4):743-755.

CHEN K L, ZHANG T S, LIANG X, et al. Analysis of shale lithofacies and sedimentary environment on Wufeng Formation-Lower Longmaxi Formation in Dianqianbei Depression[J]. Acta Sedimentologica Sinica,2018,36(4):743-755.

8
王立亭. 贵州古地理的演变[J]. 贵州地质, 1994, 11(2):133-140.

WANG L T. Evolution of paleogeography in Guizhou[J]. Guizhou Geology,1994,11(2):133-140.

9
汤良杰,郭彤楼,田海芹,等.黔中地区多期构造演化、差异变形与油气保存条件[J].地质学报,2008,82(3):298-307.

TANG L J, GUO T L, TIAN H Q, et al. Poly-cycle tectonic evolution, differential deformation and hydrocarbon reservation of central Guizhou and adjacent region[J]. Acta Geologica Sinica,2008,82(3):298-307.

10
邓新, 杨坤光, 刘彦良, 等. 黔中隆起性质及其构造演化[J]. 地学前缘, 2010, 17(3):79-88.

DENG X, YANG K G, LIU Y L, et al. Characteristics and tectonic evolution of Qianrzhong Uplift[J]. Earth Science Frontiers,2010,17(3):79-89.

11
封永泰, 赵泽恒, 赵培荣, 等. 黔中隆起及周缘基底结构、断裂特征[J]. 石油天然气学报, 2007, 29(3):35-39.

FENG Y T, ZHAO Z H, ZHAO P R, et al. Basement structure and fracture characteristics of central Guizhou Uplift and its periphery[J]. Journal of Oil and Gas Technology,2007,29(3):35-39.

12
陈方文, 卢双舫, 丁雪. 黔南坳陷牛蹄塘组富有机质页岩生气期和生气量[J]. 中国石油大学学报(自然科学版), 2016, 40(3):55-62.

CHEN F W, LU S F, DING X. Gas generation period and quantity of organic-rich Niutitang shale in Qiannan Depression,China[J]. Jourmal of China University of Petroleum,2016,40(3):55-62.

13
OCH L M, SHIELD Z A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province, South China[J]. Precambrian Research, 2013, 225:166-189.

14
汪正江, 王剑, 卓皆文, 等. 扬子陆块震旦纪—寒武纪之交的地壳伸展作用:来自沉积序列与沉积地球化学证据[J]. 地质论评, 2011, 57(5):731-742.

WANG Z J, WANG J, ZHUO J W, et al. Crust extensional activity during the transition from Sinian(Ediacaran) to Cambrian in Yangtze block: Evidences from the depositional sequence and its geochemical data[J]. Geological Review,2011,57(5):731-742.

15
杨长清. 黔中隆起及周缘下寒武统牛蹄塘组页岩气勘探前景[J]. 矿产与地质, 2016, 30(4):640-645.

YANG C Q. Shale gas exploration potential of the Lower Cambrian Niutitang Formation in Qianzhong Uplift and its periphery[J]. Mineral Resources and Geology,2016,30(4):640-645.

16
刘树根,王世玉,孙玮,等.四川盆地及其周缘五峰组—龙马溪组黑色页岩特征[J].成都理工大学学报(自然科学版),2013,40(6):621-639.

LIU S G, WANG S Y, SUN W, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013,40(6):621-639.

17
何庆,高键,董田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021,39(3):686-703.

HE Q, GAO J, DONG T, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei Province[J]. Acta Sedimentologica Sinica,2021,39(3):686-703.

18
贾智彬,侯读杰,孙德强,等.贵州地区牛蹄塘组底部烃源岩地球化学特征[J].天然气地球科学,2018,29(7):1031-1041.

JIA Z B, HOU D J, SUN D Q, et al. Geochemical characteristics of source rocks in the Lower Cambrian Niutitang Formation, Guizhou Province[J]. Natural Gas Geoscience, 2018,29(7):1031-1041.

19
胡宗全, 朱彤, 杜伟, 等. 细粒沉积研究与页岩岩相编图[M]. 北京:地质出版社,2020:25-34.

HU Z Q, ZHU T, DU W, et al. Fine Grained Sedimentation Research and Shale Facies Mapping[M]. Beijing: Geological Publishing House, 2020:25-34.

20
王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版), 2014, 50(3): 476-486.

WANG S F, ZOU C N, DONG D Z, et al. Biogenicsilica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis(Science & Technology Edition), 2014, 50(3): 476-486.

21
贾智彬, 侯读杰, 孙德强, 等. 热水沉积区黑色页岩稀土元素特征及其地质意义——以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业, 2018, 38(5):44-51.

JIA Z B, HOU D J, SUN D Q, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: A case study from the Lower Cambrian Niutitang Formation shale in central and eastern Guizhou[J]. Natural Gas Industry,2018,38(5):44-51.

22
张爱云, 伍大茂, 郭丽娜, 等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京:科学出版社, 1987:10-12.

ZHANG A Y, WU D M, GUO L N, et al. Geochemical and Metallogenic Significance of Marine Black Shale Formation[M]. Beijing: Science Press, 1987:10-12.

23
祝庆敏, 卢龙飞, 潘安阳, 等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质, 2021, 43(5):797-809.

ZHU Q M, LU L F, PAN A Y, et al. Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale,western Hunan Province,China[J]. Petroleum Geology & Experiment,2021,43(5):797-809.

24
宁诗坦, 夏鹏, 郝芳, 等. 贵州牛蹄塘组黑色页岩岩相划分及岩相—沉积环境—有机质耦合关系[J]. 天然气地球科学, 2021, 32(9):1297-1307.

NING S T, XIA P, HAO F, et al. Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province[J]. Natural Gas Geoscience, 2021,32(9):1297-1307.

25
刘惠民, 王勇, 杨永丽, 等. 东营凹陷细粒混积岩发育环境及其岩相组合——以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学, 2020,45(10):3543-3555.

LIU H M, WANG Y, YANG Y L, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es 4[J]. Earth Science,2020,45(10):3543-3555.

26
伍岳, 樊太亮, 丁怀宇. 上扬子区下寒武统海相页岩岩相类型及沉积模式[J]. 现代地质, 2017, 31(6):1222-1232.

WU Y,FAN T L, DING H Y. Lithofacies and sedimentary model of the Lower Cambrian marine shale in the Upper Yangtze platform[J]. Geoscience,2020,31(6):1222-1232.

27
ZHOU L, KANG Z H, WANG Z X, et al. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform[J]. Journal of Petroleum Science and Engineering,2017,159:376-386.

28
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology,2006,232(1-2):12-32.

29
李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组一龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.

LI Y F, SHAO D Y, LÜ H G, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(12):1470-1483.

30
WEI H Y, CHEN D Z, WANG J G, et al. Organic accumulation in the Lower Chihsia Formation (middle permian) of south China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2012, 353-355:73-86.

31
邓涛. 龙门山前陆盆地西南缘徐家河组黑色页岩特征及有机质富集机理[D]. 成都:成都理工大学, 2020:55-57.

DENG T.Characteristics and Organic Matter Enrichment Me-chanism of Black Shale in Xujiahe Formation on the Southwest Margin of Longmenshan Foreland Basin[D]. Chengdu:Chengdu University of Technology, 2020:55-57.

32
TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication,1985.

33
刘振庄. 宣城地区GD1井上二叠统页岩元素地球化学研究[D]. 北京:中国地质大学(北京), 2021:49-51.

LIU Z Z. Element Geochemistry of Upper Permian Shale in Well Gd1 in Xuancheng area[D]. Beijing:China University of Geosciences (Beijing), 2021:49-51.

34
赵永胜, 宋振亚, 温景萍, 等. 保山盆地湖相泥岩微量元素分布与古盐度定量评价[J]. 海洋与湖沼,1998,29(4):409-415.

ZHAO Y S, SONG Z Y, WEN J P, et al. Distribution of trace elements and quantitative evaluation of paleosalinity in lacustrine mudstone in Baoshan Basin[J]. Oceanologia et Limnologia Sinica,1998,29(4):409-415.

35
郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999, 20(1):20-25.

ZHENG R C, LIU M Q. Study on paleosalinity of Chang 6 formation in Ordos Basin[J].Oil & Gas Geology,1999,20(1):20-25.

36
王苏里. 南祁连盆地二叠系沉积地球化学特征与烃源岩评价[D]. 西安:西北大学,2012:59-64.

WANG S L. Research on Geochemistry Characteristic and Hydrocarbon Source Rock Evaluation of Permian System in Southern Qilian Basin[D].Xi’an:Northwest University,2012:59-64.

37
彭丽. 济阳坳陷古近系沙三下亚段湖相泥页岩岩相非均质性及控制因素研究[D].武汉:中国地质大学(武汉),2017:81-83.

PENG L. Study on Lacustrine Shale Facies Heterogeneity and Control Factors in the Lower Shahejie 3 of Paleogene in Jiyang Depression[D]. Wuhan:China University of Geosciences(Wu-han), 2017:81-83.

38
李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10):1774-1786.

LI H,LU J L,LI R L,et al. Generation paleoenvironment and its controlling factors of Lower Cretaceous lacustrine hydrocarbon source rocks in Changling Depression,South Songliao Basin[J]. Earth Science,2017,42(10):1774-1786.

39
冯乔, 张耀, 徐子苏, 等. 胶莱盆地早白垩世瓦屋夼组、水南组元素地球化学特征与古环境分析[J]. 山东科技大学学报(自然科学版),2018,37(1):20-34.

FENG Q, ZHANG Y,XU Z S,et al. Geochemical characteristics and paleoenvironmental analysis of dark fine grained rocks of Wawukuang and Shuinan formations in Jiaolai Basin[J]. Journal of Shandong University of Science and Technology (Natural Science) ,2018,37(1) :20-34.

40
庞志超, 李亚男, 张孙玄琦, 等. 主微量元素地球化学特征在沉积环境中的应用[J]. 西安文理学院学报(自然科学版), 2018,21(3):108-111.

PANG Z C, LI Y A, ZHANGSUN X Q, et al. Application of the geochemical characteristics of the major and trace elements in the sedimentary environment[J]. Journal of Xi' an University (Natural Science Edition),2018,21(3):108-111.

41
杨万芹,朱德顺,银燕,等. 古水深的地球化学恢复方法及在层序地层划分中的应用[J]. 地质论评,2015,61(增刊):756-757.

YANG W Q, ZHU S D, YIN Y, et al. Geochemical restoration methods of paleo-water depths and their applications in sequence stratigraphic division[J]. Geological Review,2015,61(S): 756-757.

42
吴智平,周瑶琪.一种计算沉积速率的新方法:宇宙尘埃特征元素法[J] .沉积学报,2000,18(3) :395-399.

WU Z P, ZHOU Y Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica,2000,18(3):395-399.

43
丁江辉, 张金川, 石刚, 等. 宣城地区龙潭组页岩沉积环境与有机质富集[J]. 沉积学报, 2021, 39(2):324-340.

DING J H, ZHANG J C, SHI G, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica,2021,39(2):324-340.

44
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885) :715-717.

45
BAI Y Y, LIU Z J, SUN P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale and coal-bearing layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97:89-101.

文章导航

/