0 引言
1 研究区概况
2 压力分布特征
2.1 柯东构造带
2.1.1 甫沙段
2.1.2 柯东段
2.2 柯克亚构造带
2.3 固满—合什塔格构造带
图7 固满构造带GT1井综合泥岩压实曲线及地层压力分布Fig. 7 Comprehensive mudstone compaction curve and formation pressure distribution of Well GT1 in the Guman structural belt |
马海龙(1998-),男,吉林梅河口人,硕士研究生,主要从事含油气盆地压力场和油气成藏机理研究.E-mail:1181437951@qq.com. |
收稿日期: 2022-05-31
修回日期: 2022-07-09
网络出版日期: 2022-12-29
Relationship between overpressure and hydrocarbon accumulation in the southern piedmont of West Kunlun Mountains
Received date: 2022-05-31
Revised date: 2022-07-09
Online published: 2022-12-29
Supported by
The National Natural Science Foundation of China(U19B6003)
the Science and Technology Project of PetroChina Tarim Oilfield Company(041020050021)
西昆仑山前构造复杂,不同构造单元的流体场特征及其与油气成藏的关系尚未揭示。梳理构造、超压与油气三者之间的关系,为前陆盆地超压和油气成藏研究提供样例,并为西昆仑山前的油气勘探与开发部署提供依据。根据实测地层压力和钻井液数据,明确了西昆仑山前南缘地区异常高压的分布特征;通过测井曲线组合和加载—卸载曲线法结合地质情况分析,明确了超压的主要形成机制;基于构造演化史和油气成藏过程,探讨了超压与油气成藏之间的关系。结果表明山前深部地层存在强超压,在柯克亚构造带浅层存在弱超压。构造挤压作用是研究区超压的最主要成因,其次为沿断裂的垂向超压传递作用。油气充注导致的超压传递是浅层是否发育超压的决定性因素,浅层油气藏常常伴随着弱超压发育。构造挤压为油气运移提供了动力和运移通道,引起的抬升剥蚀和断层活动控制着区域盖层的保存条件,在凹陷内部由于埋深迅速加大促进了烃源岩快速成熟。
马海龙 , 刘一锋 , 邱楠生 , 陈雪刚 , 王祥 , 陈才 . 西昆仑山前南缘构造带超压与油气成藏关系[J]. 天然气地球科学, 2022 , 33(12) : 2049 -2061 . DOI: 10.11764/j.issn.1672-1926.2022.07.006
The piedmont structure of West Kunlun Mountains is complex, and the fluid field characteristics of different tectonic units and their relationship with oil and gas accumulation have not been revealed. By sorting out the relationship among structure, overpressure and oil and gas, this paper provides examples for the study of overpressure and oil and gas accumulation in foreland basin, and provides basis for oil and gas exploration and development deployment in front of West Kunlun Mountains. According to the measured formation pressure and drilling fluid data, the distribution characteristics of abnormal high pressure in the southern margin of West Kunlun Mountains are clarified. The main formation mechanism of overpressure is confirmed by the combination of logging curve and loading-unloading curve method combined with geological analysis. Based on the structural evolution history and hydrocarbon accumulation process, the relationship between overpressure and hydrocarbon accumulation is discussed. The results show that there is strong overpressure in the deep strata of the piedmont. There is weak overpressure in the shallow strata of the Kekeya structural belt. Tectonic compression is the main cause of overpressure formation in the study area, followed by vertical overpressure transmission along the fault. The overpressure transmission caused by oil and gas charging is the decisive factor for the development of overpressure in shallow reservoirs, which is often accompanied by the development of weak overpressure. Tectonic compression provides power and migration channels for oil and gas migration, and the resulting uplift, denudation and fault activities control the preservation conditions of regional caprocks. In the interior of the sag, the rapid increase in burial depth promotes the rapid maturation of source rocks.
图7 固满构造带GT1井综合泥岩压实曲线及地层压力分布Fig. 7 Comprehensive mudstone compaction curve and formation pressure distribution of Well GT1 in the Guman structural belt |
1 |
李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3): 536-548.
LI W, CHEN Z X, HUANG P H, et al. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development,2021,48(3): 536-548.
|
2 |
范昌育, 王震亮, 张凤奇. 库车坳陷克拉苏冲断带传递型超压的识别、计算及其主控因素[J]. 中国石油大学学报(自然科学版), 2014, 38(3): 32-38.
FAN C Y, WANG Z L, ZHANG F Q. Identification, calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa Depression[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014,38(3):32-38.
|
3 |
范昌育, 王震亮, 王爱国, 等. 柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报, 2015, 36(6): 699-706.
FAN C Y, WANG Z L, WANG A G, et al. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers, Eboliang structure belt, northern Qaidam Basin[J]. Acta Petrolei Sinica, 2015, 36(6): 699-706.
|
4 |
GUO X, LIU K, JIA C, et al. Constraining tectonic compression processes by reservoir pressure evolution: Overpressure generation and evolution in the Kelasu thrust belt of Kuqa Foreland Basin, NW China[J]. Marine and Petroleum Geology, 2016, 72: 30-44.
|
5 |
王志宏, 郝翠果, 李建明, 等. 川西前陆盆地超压分布及成因机制[J]. 岩性油气藏, 2019,31(6): 36-43.
WANG Z H, HAO C G, LI J M, et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs, 2019, 31(6): 36-43.
|
6 |
刘成林, 平英奇, 郭泽清, 等. 柴达木盆地西北古近系新近系异常高压形成机制分析[J]. 地学前缘, 2019,26(3): 211-219.
LIU C L, PING Y Q, GUO Z Q, et al. Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam Basin[J]. Earth Science Frontiers, 2019, 26(3): 211-219.
|
7 |
张凤奇, 鲁雪松, 卓勤功, 等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质, 2020, 41(5): 1004-1016.
ZHANG F Q, LU X S, ZHUO Q G,et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of the Junnggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(5): 1004-1016.
|
8 |
ZENG L, WANG H, GONG L, et al. Impacts of the tectonic stress field on natural gas migration and accumulation: A case study of the Kuqa Depression in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2010, 27(7): 1616-1627.
|
9 |
张凤奇, 王震亮, 赵雪娇, 等. 库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系[J]. 石油学报, 2012,33(5): 739-747.
ZHANG F Q, WANG Z L, ZHAO X J,et al. Genetic mechanism of overpressure and its relationgship with hydrocarbon accumulation in Dina-2 Gasfiled,Kuqa Depression[J]. Acta Pe-trolei Sinica, 2012, 33(5): 739-747.
|
10 |
罗晓容. 前陆盆地异常流体压力:地质作用及其增压效率[J]. 地质科学, 2013, 48(1): 32-49.
LUO X R. Overpressuring in foreland basins: Geolohical affects and their efficiency[J].Chinese Journal of Geology,2013, 48(1): 32-49.
|
11 |
朱木山. 塔西南山前冲断带中新生界超压成因研究[D]. 北京:中国石油大学(北京), 2007.
ZHU M S. Overpressure Genetic Mechanism of Cenozoic and Mesozoic Strata of Thrust Belt of Southwest Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2007.
|
12 |
吴根耀, 朱德丰, 梁江平, 等. 塔里木盆地异常高压气藏的主要地质特征和成藏模式[J]. 石油实验地质, 2013, 35(4): 351-363.
WU G Y, ZHU D F, LIANG J P, et al. Main geological features and accumulation models of abnormally high-pressured gas reservoirs in Tarim Basin[J]. Petroleum Geology & Experimental, 2013, 35(4): 351-363.
|
13 |
王海芳, 杨辉廷, 陈培元, 等. 塔里木盆地柯克亚凝析气田异常高压成因分析[J]. 新疆地质, 2014, 32(2): 231-234.
WANG H F, YANG H T, CHEN P Y,et al. Genesis analysis on abnormal high pressure in Kekeya condensate gas-field, Tarim Basin[J]. Xinjiang Geology, 2014,32(2): 231-234.
|
14 |
何生, 何治亮, 杨智, 等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学(中国地质大学学报), 2009, 34(3): 457-470.
HE S, HE Z L, YANG Z,et al. Characteristics, well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J].Earth Scien-ce (Journal of China University of Geosciences),2009,34(3): 457-470.
|
15 |
赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017,38(9): 973-998.
ZHAO J Z, LI J, XU Z Y. Advances in the origin of overpressures sedimentary basins[J]. Acta Petrolei Sinica,2017,38(9): 973-998.
|
16 |
范小根, 程晓敢, 陈汉林, 等. 塔西南新生代前陆盆地东段盆山结构与冲断带变形特征[J]. 大地构造与成矿学, 2015, 39(2): 241-249.
FAN X G, CHENG X G, CHEN H L,et al. Basin-range coupling structure and deformation features of the eastern Cenozoic foreland basin in SW Tarim[J]. Geotectonica et Metallogenia, 2015, 39(2): 241-249.
|
17 |
程晓敢, 雷刚林, 陈汉林, 等. 西昆仑山前甫沙—克里阳地区新生代变形特征及油气控制作用[J]. 石油学报, 2011,32(1): 83-89.
CHENG X G, LEI G L, CHEN H L, et al. Cenozoic structural deformation of the Fusha-Keliyang area in the piedmont of the western Kunlun Mountains and its control on hydrocarbon accumulation[J]. Acta Petrolei Sinica,2011,32(1):83-89.
|
18 |
梁瀚, 汪新, 陈伟, 等. 西昆仑山前和田—柯克亚挤压构造带新生代变形时序及其地质意义[J]. 大地构造与成矿学, 2014, 38(1): 27-37.
LIANG H, WANG X, CHEN W, et al. Cenozoic deformation sequence of Hetian-Kekeya structural belt in the piedmont of West Kunlun Mountains[J]. Geotectonica et Metallogenia, 2014, 38(1): 27-37.
|
19 |
程晓敢, 黄智斌, 陈汉林, 等. 西昆仑山前冲断带断裂特征及构造单元划分[J]. 岩石学报, 2012, 28(8): 2591-2601.
CHENG X G, HUANG Z B, CHEN H L, et al. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains[J]. Acta Petrologica Sinica, 2012, 28(8): 2591-2601.
|
20 |
廖晓. 塔里木盆地西南坳陷中新生代构造演化特征及对油气成藏的控制作用[D]. 西安:西北大学, 2018.
LIAO X. Meso-Cenozoic Tectonic Evolution Characteristics and Its Controlling Effects on Hydrocarbon Accumulation in the Southwest Depression of Tarim Basin[D]. Xi´an: Northwest University, 2018.
|
21 |
王强, 彭平安, 曾建, 等. 叶城凹陷柯东1井凝析油及柯克亚原油的油源分析[J]. 地球化学, 2014, 43(5): 469-476.
WANG Q, PENG P G, ZENG J,et al. Oil source of condensates from Well Kedong 1 and crude oil from Kekeya in Yecheng Depression[J]. Geochimica, 2014, 43(5): 469-476.
|
22 |
凌东明, 韩耀祖, 白建朴. 柯克亚背斜新生代构造变形时序厘定与油气地质意义[J]. 新疆石油地质, 2018, 39(5): 501-506.
LING D M, HAN Y Z, BAI J P. Cenozoic tectonic deformation time sequence and its geological significance in Kekeya anticline[J]. Xinjiang Petroleum Geology,2018,39(5):501-506.
|
23 |
李双建,袁玉松,孙炜,等.四川盆地志留系页岩气超压形成与破坏机理及主控因素[J].天然气地球科学, 2016, 27(5): 924-931.
LI S J, YUAN Y S, SUN W, et al. The formation and destroyment mechanism of shale das overpressure and its main controlling factors in Silurian of Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(5): 924-931.
|
24 |
刘一锋,邱楠生,谢增业,等.川中古隆起寒武系超压形成与保存[J].天然气地球科学, 2016, 27(8): 1439-1446.
LIU Y F, QIU N S, XIE Z Y, et al. The formation and preservation of overpressure in old formations: Taking the Cambrian in the central of Sichuan Basin as an instance[J]. Natural Gas Geoscience, 2016, 27(8): 1439-1446.
|
25 |
任丽华,代俊杰,林承焰,等.松辽盆地扶新隆起带南部青山口组超压特征及油气地质意义[J].天然气地球科学,2017,28(7):1020-1030.
REN L H, DAI J J, LIN C Y, et al. Characteristics of overpressure and its geological significance for hydrocarbon of Qinghankou Formation in southern Fuxin Uplift, Songliao Basin[J]. Natural Gas Geoscience, 2017,28(7):1020-1030.
|
26 |
侯志强, 张书平, 李军, 等. 西湖凹陷中部西斜坡地区超压成因机制[J]. 石油学报, 2019, 40(9): 1059-1068.
HOU Z Q, ZHANG S P, LI J, et al. Genesis mechanism of overpressures in west slope of central Xihu Sag[J]. Acta Petrolei Sinica, 2019, 40(9): 1059-1068.
|
27 |
李军, 唐勇, 吴涛, 等. 准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发, 2020, 47(4): 679-690.
LI J, TANG Y, WU T,et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 679-690.
|
28 |
石万忠, 陈红汉, 何生. 库车坳陷构造挤压增压的定量评价及超压成因分析[J]. 石油学报, 2007,28(6): 59-65.
SHI W Z, CHEN H H, HE S. Quantitative evaluation on contribution of structural compression to overpressure and analysis on origin of overpressure in Kuqa Depression[J]. Acta Petrolei Sinica, 2007,28(6): 59-65.
|
29 |
李军, 张超谟, 王贵文, 等. 挤压盆地泥岩对地应力响应特征机理及地质应用[J]. 测井技术, 2004 (2): 141-144.
LI J, ZHANG C M, WANG G W,et al. Shale responses to terrestrial-stress, response mechanism and application in the tectonic compressive areas[J].Well Logging Technilogy,2004 (2): 141-144.
|
30 |
BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95.
|
31 |
TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore-pressure prediction in the Ba-ram Province,Brunei[J]. AAPG Bulletin,2009,93(1): 51-74.
|
32 |
李郁德. 柯克亚油气田储层孔隙结构特征[J]. 新疆石油地质, 1991, 12(3): 243-249.
LI Y D. Characteristics of reservoir pore structure in Kekeya condensate gas field[J]. Xinjiang Petroleum Geology, 1991,12 (3): 243-249.
|
33 |
陈丽华. 柯克亚油气田中新统西河甫组砂岩储层的成岩特征[J]. 新疆石油地质, 1989, 10(2): 43-47.
CHEN L H. Diagenetic characteristics of sandstone reservoirs in Xihefu Formation of Middle Neogene in Kekeya oil and gas field[J]. Xinjiang Petroleum Geology, 1989, 10(2): 43-47.
|
34 |
LUO X, WANG Z, ZHANG L, et al. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 91(8): 1123-1139.
|
35 |
刘雯, 邱楠生, 马寅生, 等. 川西坳陷北部断褶带中二叠统异常流体压力分布特征及成因分析[J]. 地质力学学报, 2020, 26(6): 911-922.
LIU W, QIU N S, MA Y S, et al. Distribution characteristics and genetic analysis of the abnormal fluid pressure in the Middle Permian in the northern fault-fold zone of the western Sichuan Depression[J]. Journal of Geomechanics, 2020, 26(6): 911-922.
|
36 |
BURGREEN-CHAN B, MEISLING K E, GRAHAM S. Basin and petroleum system modelling of the East Coast Basin, New Zealand: A test of overpressure scenarios in a convergent margin[J]. Basin Research, 2016, 28(4): 536-567.
|
37 |
罗晓容. 断裂成因他源高压及其地质特征[J]. 地质学报, 2004, 78(5): 641-648.
LUO X R. Allogenic overpressuring associated with faulting and geological consequences[J].Acta Geologica Sinica, 2004, 78(5): 641-648.
|
38 |
张敏, 黄光辉, 赵红静, 等. 塔里木盆地柯克亚地区凝析油气藏成因特征研究[J]. 中国科学(D辑:地球科学),2008,38(S2):17-23.
ZHANG M, HUANG G H, ZHAO H J, et al. Study on the genetic characteristics of condensate reservoirs in Kekeya area, Tarim Basin[J].Scientia Sinica(Terrae),2008,38(S2):17-23.
|
39 |
杜治利, 曾昌民, 邱海峻, 等. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016,46(3): 651-660.
DU Z L, ZENG C M, QIU H J, et al. Key formations of the Permian hydrocarbon source rocks and oil-source correlation of Well KD1 in Yecheng Depression of southwestern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 651-660.
|
40 |
GONG D, WANG Z, LIU G. Re-examination of the oil and gas origins in the Kekeya Gas condensate field, Northwest China: A case study of hydrocarbon-source correlation using sophisticated geochemical methods[J].Acta Geologica Sinica (Bei-jing), 2017, 91(1): 186-203.
|
41 |
莫午零, 林潼, 张英, 等. 西昆仑山前柯东—柯克亚构造带油气来源及成藏模式[J]. 石油实验地质, 2013,35(4): 364-371.
MO W L, LIN T, ZHANG Y, et al. Hydrocarbon origin and accumulation model of Kedong-Kekeya tectonic belt in piedmont of West Kunlun Mountain[J]. Petroleum Geology & Experiment, 2013, 35(4): 364-371.
|
/
〈 |
|
〉 |