天然气地质学

鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限

  • 陈佳 , 1 ,
  • 封从军 , 1 ,
  • 俞天军 2 ,
  • 陈刚 2 ,
  • 唐明明 2 ,
  • 孙萌思 3
展开
  • 1. 西北大学地质学系大陆动力学国家重点实验室,陕西 西安 710069
  • 2. 延长石油集团油气勘探公司蟠龙采气厂,陕西 延安 716002
  • 3. 延安大学石油工程与环境工程学院,陕西 延安 716000
封从军(1981-),男,山东胶南人,副教授,博士,主要从事非常规油气沉积学研究.E-mail:.

陈佳(1997-),女,陕西咸阳人,硕士研究生,主要从事非常规油气研究. E-mail:.

收稿日期: 2021-11-22

  修回日期: 2022-02-13

  网络出版日期: 2022-06-28

The lower limit of physical properties of tight reservoir in He 8 Member of Y113-Y133 gas well area, Yanchang Gas Field, Ordos Basin

  • Jia CHEN , 1 ,
  • Congjun FENG , 1 ,
  • Tianjun YU 2 ,
  • Gang CHEN 2 ,
  • Mingming TANG 2 ,
  • Mengsi SUN 3
Expand
  • 1. State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi'an 710069,China
  • 2. Panlong Gas Production Plant of Oil and Gas Exploration Company,Shaanxi Yanchang Petroleum (Group) Co. Ltd. ,Yan′an 716002,China
  • 3. School of Petroleum Engineering and Environmental Engineering,Yan′an University,Yan′an 716000,China

Received date: 2021-11-22

  Revised date: 2022-02-13

  Online published: 2022-06-28

Supported by

The Natural Science Basic Research Program of Shaanxi Province, China(2020JQ-798)

本文亮点

阐明鄂尔多斯盆地延长气田盒8段致密储层物性下限及分布,可为延长气田致密砂岩气勘探开发提供理论依据。综合应用岩心、测井以及试气等资料,对鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限进行研究。结果表明:研究区盒8段主要为岩屑砂岩,填隙物主要为水云母和硅质,孔隙类型有原生孔隙和次生孔隙,后者居多;综合利用经验统计法、压汞法以及试气法进行研究,并通过建立物性模型、最大孔喉半径与物性拟合以及生产动态资料检验,最终认为盒8段致密储层孔隙度下限为5%,渗透率下限为0.06×10-3 μm2,对应的排驱压力为1.7 MPa,中值压力为20 MPa,最大孔喉半径为300 nm;在此基础上将有效储层分为3类:Ⅰ类储层物性、含气性等最好,是最有利储层,位于河道中心位置;Ⅱ类储层较好,分布于河道较中心位置;Ⅲ类储层最差,位于河道边缘位置。

本文引用格式

陈佳 , 封从军 , 俞天军 , 陈刚 , 唐明明 , 孙萌思 . 鄂尔多斯盆地延长气田Y113—Y133天然气井区盒8段致密储层物性下限[J]. 天然气地球科学, 2022 , 33(6) : 955 -966 . DOI: 10.11764/j.issn.1672-1926.2022.02.003

Highlights

The lower limit of physical property and distribution of tight reservoir in the 8th Member of Permian Shihezi Formation (He 8 Member ) of Yanchang Gas Field in Ordos Basin are clarified, which can provide theoretical basis for tight gas exploration and development in Yanchang Gas Field. The lower limit of physical properties of tight reservoir in He 8 Member of Y113-Y133 gas well area in Yanchang Gas Field, Ordos Basin was studied by comprehensive application of core, logging and gas test data. The results show that He 8 Member in the study area is mainly lithic sandstone, the interstitial materials are mainly hydromica and siliceous, and the types of pores are primary pores and secondary pores, with the latter predominating. Comprehensive use of empirical statistics, mercury injection method and gas test method, and through the establishment of physical property model, maximum pore-throat radius and physical property fitting and production dynamic data inspection, the lower limit of physical property of He 8 tight reservoir is determined as follows: The porosity is 5% and the permeability is 0.06×10-3 μm2, corresponding displacement pressure is 1.7 MPa, median pressure is 20 MPa, and maximum pore throat radius is 300 nm. On this basis, the effective reservoir can be divided into three types: Type Ⅰ reservoir with the best physical and gas-bearing properties is the most favorable reservoir located in the center of the channel, Type Ⅱ reservoir is the best reservoir, and Type Ⅲ reservoir is the worst reservoir located at the edge of the channel.

0 引言

鄂尔多斯盆地“南油北气”的固有认知以及晚古生代砂体分布规律认识不明确两大问题的存在,长期以来限制着盆地天然气勘探开发进程1-2。随着世界油气需求量急剧攀升与常规油气产量不断减少之间矛盾的不断加剧,非常规油气逐渐成为新的关注点,由此发现其具有较大的资源潜力,从而引起各个国家以及行业相关单位的高度重视,进一步推动石油天然气地质理论的发展创新3。于2003年完钻的延长探区第一口天然气探井强化了对该区的地质认识,认为延长气田烃源岩广泛发育,储集层主要以水下分流河道砂体及障壁岛砂坝最为发育,作为盖层的泥岩厚度大、分布广,天然气资源潜力在7 500×108 m3以上。Y113—Y133天然气井区位于延安市以北,其北部分布苏里格气田、靖边气田、长北气田、子洲气田以及延长石油集团的延气2—延128气田等[图1(a)]。本文以Y113—Y133井区盒8段为目标层段,利用薄片、物性、压汞、开发动态等资料,采用经验统计法、压汞法、试气法等方法研究目的层段物性下限值,并通过交会图对有效储层进行分类,为鄂尔多斯盆地致密气的勘探开发提供数据支撑。
图1 研究区地理位置图(a)及地层综合柱状图(b)

Fig.1 Geographical location map(a) and comprehensive stratigraphic histogram(b) of the study area

1 区域地质背景

鄂尔多斯盆地属于叠合含油气盆地,盆地构造在古生代由克拉通演化为克拉通坳陷4。其基底为太古界及下元古界的变质岩,沉积地层总体厚度为5 000~10 000 m,自下而上分别为长城系、蓟县系、震旦系、寒武系、奥陶系、石炭系、二叠系、三叠系、侏罗系、白垩系、古近系及新近系等,主要油气产层是侏罗系、三叠系、二叠系以及奥陶系,其中二叠系自下而上太原组、山西组、石盒子组以及石千峰组发育完整5
延长气田Y113—Y133天然气井区位于鄂尔多斯盆地伊陕斜坡中东部,面积为2 341 km2,自下而上主要发育本溪组、太原组、山西组以及石盒子组,石盒子组可分为上石盒子组和下石盒子组,下石盒子组自下而上发育盒8段—盒5段4个层段,厚度为120~180 m,上石盒子组自下而上发育盒4段—盒1段4个层段,厚度为100~175 m6。底部盒8段是石盒子组天然气勘探的主力层位,亦是本文研究的目的层,自下而上可分为盒82 2、盒82 1、盒81 2及盒81 1共4个小层[图1(b)]。研究区盒8段岩性主要为中—细砂岩与泥岩互层,细粒岩石中平行层理、冲刷面、板状交错层理及槽状交错层理等沉积构造在研究区较为多见。发育辫状河三角洲沉积体系,主要为三角洲前缘,河道频繁迁移,在横向连续性较差的砂岩中形成多个小型岩性油气藏,多个小型油气藏垂向叠置,进一步形成面积较大的复合岩性油气藏7-14

2 储层基本特征

2.1 矿物组分

根据砂岩分类三角图(图2)可知,研究区盒8段储层以岩屑砂岩为主,主要矿物成分为石英[图3(a)],平均含量为62.7%;岩屑含量为26.1%[图3(b)],长石[图3(a)]含量很低,只有0.4%(图4)。岩屑以变质岩岩屑最多(0%~48%,平均为15.6%),其中主要为千枚岩岩屑和黏土岩屑[图3(b)],岩浆岩岩屑(0%~9%,平均为1.7%)和沉积岩岩屑(0%~9%,平均为0.8%)很少,可见石英岩岩屑[图3(a),图3(b)],其他岩屑含量占比5.1%(图5)。通过分析薄片资料,分别作石英类矿物含量、岩屑类矿物含量与分析孔隙度关系图(图6),通过关系图可以看出当石英类矿物含量为62.7%时对应的孔隙度范围为1.8%~6.8%,总体上石英类矿物含量变化范围较大,为23%~94%,对应的孔隙度变化也较大,范围为0.5%~7.4%;岩屑类矿物含量为26.1%时对应的孔隙度范围为3.1%~7.4%,总体来说岩屑类矿物含量变化范围也较大,在15%~60%之间,相应的孔隙度范围为0.1%~7.1%,由此很难确定物性下限。最终认为储层的物性受岩性组分的影响很大,孔隙度随着石英类矿物含量的增加而增大,随着岩屑类矿物含量的增加而减小。
图2 盒8段砂岩分类三角图

Fig.2 Triangulation of sandstone classification of He 8 Member

图3 Y113—Y133井区盒8段致密砂岩储层显微照片

(a)可见石英、长石、云母、石英岩岩屑,YQ1井,2 867.35~2 867.40 m;(b)黏土岩屑和千枚岩岩屑,可见方解石,YQ1井,2 870.20~2 870.25 m;(c)偶见有绿帘石,YQ1井,2 878.60~2 878.67 m;(d)粒间分布片状黏土矿物,Y101井,2 997.18~2 997.27 m;(e)书页状蚀变高岭石,Y101井,3 002.68~3 002.74 m;(f)残余粒间孔,Y153井,2 761.02 m;(g)长石粒内溶蚀孔,Y153井,2 760.8 m;(h)长石粒间孔,Y101井,2 998.73~2 998.87 m;(i)微裂缝,Y153井,2 764.18 m

Fig.3 Micrograph of tight sandstone reservoir in He 8 Member of Y113-Y133 wells block

图4 盒8段砂岩主要碎屑成分含量直方图

Fig.4 Histogram of main detrital component content of He 8 Member sandstone

图5 盒8段砂岩岩屑成分柱状图

Fig.5 Bar diagram of lithic composition of He 8 Member sandstone

图6 盒8段储层孔隙度与岩石矿物含量关系

Fig.6 Relationship between reservoir porosity and rock mineral content of He 8 Member

2.2 填隙物组分

填隙物是沉积作用和成岩作用的共同产物,它包含杂基和胶结物2种。研究区盒8段填隙物含量为13.2%,主要为胶结物,其中水云母(3.1%)、硅质(2%)、绿泥石(1.8%)以及黏土(1.5%)含量较多,凝灰质(0.4%)和菱铁矿(0.3%)含量相对较少(图7)。云母为塑性矿物,在上覆地层压力下会发生压实作用,从而减少孔隙空间,黑云母不稳定,容易遭受水化作用改造,已泥铁质化[图3(a)];铁方解石、菱铁矿等碳酸盐胶结物充填孔隙空间并且难以溶蚀,对储层造成破坏,可见粉—中晶方解石呈星散状不均匀分布[图3(b)];硅质胶结物主要表现为石英次生加大边,是破坏粒间孔的重要原因之一;岩石中偶见绿帘石[图3(c)];黏土矿物分布于岩石粒间[图3(d)],不同黏土矿物对储层物性影响不一致(图8),高岭石的存在虽会减小孔隙空间,但由于其与长石溶孔相伴生,且晶形较大,总体来说会增大岩石孔隙空间,可见粒间分布书页状蚀变高岭石[图3(e)];绿泥石一方面能够抑制石英次生加大边的生长从而保存部分原生孔隙,另一方面会充填于岩石中而使孔隙空间复杂化,总体认为绿泥石会使储层物性变差。
图7 Y113—Y133井区盒8段致密砂岩填隙物组分柱状图

Fig.7 Histogram of tight sandstone interstitial components in He 8 Member of Y113 -Y133 wells block

图8 盒8段砂岩不同填隙物含量与物性关系

Fig.8 Relationship between different interstitial matter content and physical properties in sandstone of He 8 Member

2.3 孔隙类型

通过薄片鉴定、岩心观察及扫描电镜等资料的分析认为,盒8段孔隙类型有原生孔隙和次生孔隙。研究区砂岩主要为次生孔隙,原生孔隙在总孔隙中占比较小。原生孔隙有残余粒间孔和微孔隙,残余粒间孔即碎屑颗粒在经历石英次生加大和机械压实后而保留下来的孔隙。研究区盒8段可见石英加大边形成的多边形残余粒间孔[图3(f)],微孔隙较少见,个体小且分布不均匀。次生孔隙多数形成于成岩作用中后期,一般都是岩石组分发生溶蚀作用的结果,也包括岩石因破裂或收缩作用而形成的裂缝。研究区次生孔隙主要包括长石粒内溶蚀孔[图3(a),图3(g)]、长石粒间溶蚀孔[图3(h)]、铸模孔、高岭石晶间孔、微裂缝[图3(i)]等。

2.4 物性特征

根据研究区205口井共15 968个样品点物性资料数据显示,盒8段孔隙度主要分布在0%~10%之间,平均值为3.78%,中值为3.3%;渗透率主体分布在(0.01~1)×10-3 μm2区间内,平均值为0.09×10-3 μm2,中值为0.04×10-3 μm2,总体为致密储层。

3 致密气储层物性下限确定

3.1 储层物性下限确定

3.1.1 经验统计法

经验统计法是一种以岩心孔隙度与渗透率为数据支撑,按照储层储能、产能丢失频率分别小于10%、5%为界限来确定物性下限的一种方法15-21。通过对42口取心井数据分析,盒8段孔隙度下限取5%时,累计储能丢失9.86%;渗透率下限值取0.06×10-3 μm2时,累计产能丢失4.8%。据此确定的储层孔隙度下限为5%,渗透率下限为0.06×10-3 μm2图9)。
图9 Y113—Y133井区盒8段致密储层物性累计分布与能力丢失图

(a)累计储能丢失频率;(b)累计产能丢失频率

Fig.9 Accumulation distribution and capacity loss of physical properties of tight reservoir in He 8 Member of Y113-Y133 wells block

3.1.2 压汞法

压汞实验中对于不同的孔隙空间结构研究得到的一系列孔隙结构参数是研究储层物性下限值的有效方法之一,能够从不同方面反映储层物性。在众多的孔隙结构参数中能够宏观表征储层孔喉大小的主要为排驱压力和中值压力。因此,建立排驱压力、中值压力与孔、渗之间的关系并确定拐点位置对于有效储层评价尤为重要。利用研究区压汞资料,分别建立致密砂岩储层孔隙度、渗透率与排驱压力、中值压力交会图16图10)。当孔隙度小于5%、渗透率小于0.06×10-3 μm2时,排驱压力、中值压力均急速增大,说明孔隙度小于5%,渗透率小于0.06×10-3 μm2后,很难成为有效储层,因此确定研究区盒8段致密气储层孔隙度下限为5%、渗透率下限为0.06×10-3 μm2
图10 Y113—Y133井区盒8段致密储层物性与压汞参数关系

Fig.10 Relationship between physical properties and mercury injection parameters of tight reservoir in He 8 Member of Y113-Y133 wells block

3.1.3 试气法

试气法是一种综合利用试气层段的分析孔隙度和渗透率值,并结合试气结论在孔—渗交会图上的投点对储层物性下限值进行划分的快捷而有效的方法21-22
图11中可看出,气层、含水气层以及气水同层几乎都分布在孔隙度和渗透率值较高的区域,而干层则主要集中在孔渗较差的左下角,各个试气结论的分段性较好。笔者在综合分析后,将研究区盒8段的孔隙度下限值定为5%,渗透率下限值定为 0.06×10-3 μm2图11)。
图11 Y113—Y133井区试气层段孔隙度与渗透率关系

Fig.11 Relationship between gas testing interval porosity and permeability in Y113-Y133 wells block

因此,综合上述3种方法,认为Y113—Y133井区盒8段有效储层孔隙度下限为5%,渗透率下限为0.06×10-3 μm2

3.2 储层物性下限检验

3.2.1 物性模型检验

通过研究区取心井299个数据点建立了孔隙度和渗透率物性模型(y=0.014 4x-0.016 9),将由3种方法确定的储层孔隙度下限值5%代入此物性模型中,计算出的渗透率值约为0.06×10-3 μm2,证明所取的物性下限值是合理的(图12)。
图12 Y113—Y133井区盒8致密储层孔隙度—渗透率交会

Fig.12 Crossplot of porosity and permeability of tight reservoir in He 8 Member of Y113-Y133 wells block

3.2.2 最大孔喉半径与物性拟合检验

邹才能等23曾提出致密砂岩气储层存在于300~900 nm之间的纳米级孔隙中,本文利用压汞资料拟合最大孔喉半径与孔隙度、渗透率的函数关系24-26,以300 nm作为致密砂岩储层最大临界孔喉半径,对应的致密砂岩储层孔隙度值为5%,渗透率值为0.06×10-3 μm2图13),由此可见所取的储层物性下限值较为合理。
图13 Y113—Y133井区盒8段最大孔喉半径与物性函数拟合关系

Fig.13 Fitting relationship between the maximum pore-throat radius and physical property function in He 8 Member of Y113-Y133 wells block

3.2.3 生产动态检验

通过试气资料可知,W1井在2 988.3~2 990.7 m深度的无阻流量为0.262 4×104 m3/d,孔隙度与渗透率分别为8.69%、0.435×10-3 μm2;W2井在2 712.2~2 718.9 m深度无阻流量为1.248 5×104 m3/d,孔隙度与渗透率分别为9.1%、0.8×10-3 μm2,均大于分析所得的物性下限值,表明本次所确定的物性下限较为可靠。

4 储层分类

致密砂岩储层可按照渗透率和孔隙度的大小分为多种类型。国内外学者27-30和研究机构提出了致密砂岩的孔隙度和渗透率划分标准,从而划分出致密砂岩气藏类型,致密砂岩常泛指渗透率小于1×10-3 μm2、孔隙度小于10%的砂岩。贾承造等31以空气渗透率为1×10-3 μm2作为致密储层渗透率上限对国内主要致密储层孔隙度进行了相关统计(一般基质覆压渗透率为0.1×10-3 μm2),最终将致密储层划分为3种类型:致密Ⅰ类、致密Ⅱ类及致密Ⅲ类,其孔隙度分别为7%~10%、4%~7%和<4%,这一划分标准所采用的渗透率均为致密储层渗透率上限值。
首先,笔者将含气饱和度划分为3个层次(小于15%、15%~50%、大于50%),并利用岩心数据对不同含气饱和度的物性作图(图14),发现不同含气饱和度的物性呈现分区现象,同时,本文划分的最小含气饱和度区间数据在图14上的分布也印证了所确定的有效储层物性下限值是可靠的。其次,利用划分的含气性和物性特征进一步对无阻流量、有效储层厚度以及电性特征进行分类(图15图19),最终建立盒8段储层物性及电性等分类评价标准32-38表1)。
图14 储层孔隙度与渗透率交会分类

Fig.14 Reservoir porosity and permeability cross classification

图15 储层含气饱和度与无阻流量关系

Fig.15 Relationship between reservoir gas saturation and open flow

图16 储层无阻流量与有效厚度关系

Fig.16 Relationship between open flow and effective thickness of reservoir

图17 储层含气饱和度与电阻率关系

Fig.17 Relationship between gas saturation and resistivity of reservoir

图18 储层孔隙度与声波时差关系

Fig.18 Relationship between reservoir porosity and acoustic time difference

图19 储层声波时差与密度关系

Fig.19 Relationship between acoustic time difference and density in reservoir

表1 研究区盒8致密储层分类评价标准

Table 1 Classification and evaluation criteria of He 8 Member tight reservoir in the study area

分类 物性特征 含气性特征 有效厚度 /m 无阻流量 /(104 m3/d) 电性特征
孔隙度/% 渗透率/(10-3 μm2 含气饱和度/% 声波时差/(μs/m) 密度/(g/cm3 电阻率/(Ω·m)
>9 >0.8 >50 >8.5 >0.7 >230 <2.41 >56
7~9 0.3~0.8 15~50 3.5~8.5 0.2~0.7 222~230 2.41~2.47 18~56
5~7 0.06~0.3 <15 <3.5 <0.2 214~222 2.47~2.51 <18
结合盒8段孔隙度、渗透率所反映的物性特征与辫状河沉积相特征,对研究区盒8段3类储层平面展布特征进行研究认为:Ⅰ类储层物性最好,主要位于水下分流河道主体部位,多分布在井区中央位置;Ⅱ类储层物性较好,分布于水下分流河道较中心位置;Ⅲ类储层物性最差,主要存在于水下分流河道边缘(图20)。
图20 研究区盒8段盒82 1小层储层展布特征

Fig.20 Distribution characteristics of He 82 1 reservoir in He 8 Member in the study area

以W3井为例,对该井盒8段2 615.5~2 621.3 m采用一点法进行试气求产,折算平均气产量0.386 0×104 m3/d,属于Ⅱ类储层。该段对应的孔隙度平均值为8.59%,渗透率平均值为0.401×10-3 μm2,含气饱和度平均值为48.77%,声波时差平均值为228.52 μs/m,密度平均值为2.41 g/cm3,电阻率平均值为47.81 Ω·m, 符合本次储层分类方法。根据此分类方法,对于该井下部厚层砂岩段进行储层划分,发现盒8段下部存在Ⅰ类优势储层和Ⅲ类储层(图21)。
图21 W3井盒8段测井综合柱状图

Fig.21 Integrated logging histogram of He 8 Member in Well W3

5 结论

(1)研究区盒8段致密砂岩储层以岩屑砂岩为主,矿物成分主要为石英,岩屑次之,主要为变质岩岩屑;填隙物主要为水云母和硅质;孔隙类型多样,原生孔隙(残余粒间孔)较少,次生孔隙(粒间孔、粒内孔及微裂缝等)居多;根据物性资料统计显示,研究区盒8段为致密储层。
(2)综合应用多种研究方法,并通过建立物性模型、最大孔喉半径与物性拟合以及生产动态资料对所取物性下限值进行检验,最终认为研究区盒8段致密储层孔隙度下限为5%,渗透率下限为0.06×10-3 μm2,并通过分析研究认为该物性下限取值是合理的,对应的排驱压力为1.7 MPa,中值压力为20 MPa,最大孔吼半径为300 nm。
(3)综合应用测井及试气资料,将研究区盒8段致密储层分为3类,其中Ⅰ类储层孔隙度、渗透率、含气饱和度、声波时差、电阻率值最高,密度值最低,是最有利储层,主要分布于河道中心;Ⅱ类储层各类指标适中,储气能力较好,主要分布于河道较中心位置;Ⅲ类储层孔隙度、渗透率、含气饱和度、声波时差、电阻率值最低,密度值最高,是较差储层,主要分布于河道边缘。
1
刘琴琴,陈桂华,陈晓智,等.鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J].天然气地球科学,2018,29(8):1094-1101.

LIU Q Q, CHEN G H, CHEN X Z, et al. Provenance characteristics of Upper Paleozoic Shangshihezi Formation in L area, Ordos Basin and its controlling effect on reservoir[J]. Natural Gas Geoscience,2018,29(8):1094-1101.

2
于兴河,王香增,王念喜,等.鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征[J].古地理学报,2017,19(6):935-954.

YU X H,WANG X Z,WANG N X,et al.Sequence stratigra-phic framework and sedimentary evolution characteristics of gas-bearing sand bodies of the Upper Paleozoic in southeastern Ordos Basin[J].Journal of Palaeogeography,2017,19(6):935-954.

3
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.

ZOU C N, ZHU R K, WU S T, et al. Types, characteristics, mechanism and prospects of conventional and unconventional hydrocarbon accumulations: A case study of tight oil and tight gas in China[J].Acta Petrolei Sinica,2012,33(2):173-187.

4
李志华,黄文辉.辫状河三角洲岩相特征及沉积模式——以鄂尔多斯盆地苏南地区盒8段为例[J].岩性油气藏,2017,29(1):43-50.

LI Z H, HUANG W H. Lithofacies characteristics and sedimentary model of braided river delta: A case study of He8 Member in southern Jiangsu area, Ordos Basin[J]. Lithologic Reservoirs,2017,29(1):43-50.

5
李文厚,张倩,李克永,等.鄂尔多斯盆地及周缘地区晚古生代沉积演化[J].古地理学报,2021,23(1):39-52.

LI W H, ZHANG Q, LI K Y, et al. Sedimentary evolution of Late Paleozoic in Ordos Basin and its surrounding areas[J]. Journal of Palaeogeography, 2021,23(1):39-52.

6
席胜利,王怀厂,秦伯平.鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业,2002,22(2):21-24,10.

XI S L, WANG H C, QIN B P. Provenance analysis of the Shanxi and Xiashihezi formations in the northern Ordos Basin [J]. Natural Gas Industry,2002,22(2):21-24,10.

7
XIAO H P, LIU R E, ZHANG F D,et al.Sedimentary model reconstruction and exploration significance of Permian He8 Member in Ordos Basin, NW China[J].Petroleum Exploration and Development, 2019,46(2):280-292.

8
ZHAO W B, HU S Y, DENG X Q, et al. Physical property and hydrocarbon enrichment characteristics of tight oil reservoir in Chang 7 division of Yanchang Formation, Xin'anbian Oilfield,Ordos Basin,China[J]. Petroleum Science,2021,18(5):1294-1304.

9
卢志远,何治亮,马世忠,等.高能辫状河沉积特征及砂体分布——以苏东X密井网区为例[J].石油学报,2021,42(8):1003-1014.

LU Z Y, HE Z L, MA S Z, et al. Sedimentary characteristics and sand body distribution of high-energy braided river: A case study of X-dense well pattern area in eastern Jiangsu Province[J]. Acta Petrolei Sinica, 2021,42(8):1003-1014.

10
郭家铭.苏里格南部上古生界山1段、盒8段物源分析与沉积体系展布特征[J].非常规油气,2019,6(6):41-49.

GUO J M. Provenance analysis and depositional system distribution of Shan1 Member and He 8 Member of Upper Paleozoic Boundary Mountain in southern Sulige[J]. Unconventional Oil & Gas,2019,6(6):41-49.

11
郭艳琴,赵灵生,郭彬程,等.鄂尔多斯盆地及周缘地区下二叠统沉积特征[J].古地理学报,2021,23(1):65-80.

GUO Y Q, ZHAO L S, GUO B C, et al. Sedimentary characteristics of Lower Permianin Ordos Basin and its surrounding areas[J]. Journal of Palaeogeography, 2021,23(1):65-80.

12
王若谷,周进松,杜永慧,等.鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式[J].地质科学,2021,56(4):1088-1105.

WANG R G, ZHOU J S, DU Y H, et al. Sedimentary evolution model of Carboniferous-Permian in Yan 'an Gas Field, southeastern Ordos Basin[J].Chinese Journal of Geology, 2021,56(4):1088-1105.

13
马东旭,许勇,吕剑文,等.鄂尔多斯盆地临兴地区下石盒子组物源特征及其与储层关系[J].天然气地球科学,2016,27(7):1215-1224.

MA D X, XU Y, LV J W, et al. Provenance characteristics and reservoir relationship of Lower Shihezi Formation in Linxing area, Ordos Basin[J]. Natural Gas Geoscience,2016,27(7):1215-1224.

14
窦伟坦,侯明才,董桂玉.鄂尔多斯盆地北部山西组—下石盒子组物源分析[J].天然气工业,2009,29(3):25-28,132.

DOU W T, HOU M C, DONG G Y. Provenance analysis of Shanxi-Xiashihezi Formation in northern Ordos Basin[J]. Natural Gas Industry,2009,29(3):25-28,132.

15
张安达,王成,乔睿.致密砂岩储层物性下限确定新方法及系统分类[J].岩性油气藏,2014,26(5):5-8.

ZHANG A D,WANG C,QIAO R.A new method for determi-ning the physical property lower limit of tight sandstone reservoir and its systematic classification[J].Lithologic Reservoirs,2014,26(5):5-8.

16
张安达,潘会芳.致密储层物性下限确定新方法及其应用[J].断块油气田,2014,21(5):623-626.

ZHANG A D, PAN H F. A new method for determining the lower limit of tight reservoir physical property and its application[J] .Fault Block Oil & Gas Field,2014,21(5):623-626.

17
梁全胜,张志升,张金良,等.陕北下寺湾油区长7致密油储层物性下限的确定[J].非常规油气,2016,3(2):17-21.

LIANG Q S, ZHANG Z S, ZHANG J L, et al. Determination of lower limit of physical properties of Chang 7 tight oil reservoir in Xiashiwan oil area, northern Shaanxi[J].Unconventional Oil & Gas,2016,3(2):17-21.

18
吕雪莹,蒋有录,刘景东,等.东濮凹陷杜寨地区沙三中-下段致密砂岩气藏有效储层物性下限[J].地质科技情报,2017,36(3):182-188.

LV X Y, JIANG Y L, LIU J D, et al. Lower limit of effective reservoir physical property of middle-lower member of Sha 3 tight sandstone gas reservoir in Duzhai area, Dongpu Depression[J].Geological Science and Technology Information,2017,36(3):182-188.

19
许璟,贺永红,马芳侠,等.鄂尔多斯盆地定边油田主力油层有效储层厚度[J].岩性油气藏,2021,33(5):107-119.

XU J, HE Y H, MA F X, et al. Effective reservoir thickness of main reservoirs in Dingbian Oilfield, Ordos Basin[J].Lithologic Reservoirs, 2021,33(5):107-119.

20
张鹏飞,卢双舫,李文浩,等.江汉盆地新沟嘴组页岩油储层物性下限[J].石油与天然气地质,2016,37(1):93-100.

ZHANG P F, LU S F, LI W H, et al. Lower limit of shale oil reservoir physical properties in Xinguozui Formation, Jianghan Basin[J].Oil & Gas Geology,2016,37(1):93-100.

21
王娟,刘学刚,崔智林.确定储集层孔隙度和渗透率下限的几种方法[J].新疆石油地质,2010,31(2):203-204,207.

WANG J, LIU X G, CUI Z L. Methods for determining the lower limit of porosity and permeability in reservoirs[J]. Xinjiang Petroleum Geology,2010,31(2):203-204,207.

22
鲁锋,王剑,张娟,等.莫索湾地区三工河组一段储层特征及有效物性下限[J].断块油气田,2021,28(3):300-304.

LU F,WANG J,ZHANG J,et al.Reservoir characteristics and lower limit of effective physical properties of the first Member of Sangonghe Formation in Mosuowan area[J]. Fault-block Oil & Gas Field, 2021,28(3):300-304.

23
邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399,454.

ZOU C N, ZHANG G S, YANG Z, et al. Concept, characteristics, potential and technology of unconventional oil and gas: Also on unconventional oil and gas geology[J].Petroleum Exploration and Development,2013,40(4):385-399,454.

24
邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322.

ZOU C N, TAO S Z, YANG Z, et al. New progress of unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy, Petrology and Geochemistry,2012,31(4):312-322.

25
赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406.

ZHAO J Z. Concept, classification and resource potential of unconventional oil and gas[J]. Natural Gas Geoscience,2012,23(3):393-406.

26
邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.

ZOU C N, ZHU R K, BAI B, et al. Discovery of nanopores in oil and gas reservoirsin China and its scientific value[J].Acta Petrologica Sinica,2011,27(6):1857-1864.

27
戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.

DAI J X, NI Y Y, WU X Q. Tight sandstone gas in China and its significance in exploration and development[J]. Petroleum Exploration and Development,2012,39(3):257-264.

28
FAN A P, YANG R C, LENHARDT N, et al. Cementation and porosity evolution of tightsandstone reservoirs in the Permian Sulige Gas Field, Ordos Basin (central China)[J].Marine and Petroleum Geology,2019,103:276-293.

29
LU X S, ZHAO M J, LIU K Y, et al.Formation condition of deep gas reservoirs in tight sandstones in Kuqa Foreland Basin[J]. Petroleum Research, 2018,4(3):346-358.

30
YU Y, LIN L B, ZHAI C B, et al.Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th Member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin, southwest China[J]. Marine and Petroleum Geology, 2019, 107:1-19.

31
贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.

JIA C Z, ZHENG M, ZHANG Y F.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129-136.

32
赵军,吴博深,武延亮,等.深层致密砂岩气藏有效储层的分类评价方法[J].西南石油大学学报(自然科学版),2022,44(2):31-39.

ZHAO J, WU B S, WU Y L, et al. Classification and evaluation method of effective reservoir in deep tight sandstone gas reservoir[J]. Journal of Southwest Petroleum University (Natural Science Edition),2022,44(2):31-39.

33
秦波,曹斌风,周进松,等.致密砂岩气储层有效性识别和定量评价——以鄂尔多斯盆地东南部上古生界山西组一段为例[J].沉积学报,2019,37(2):403-415.

QIN B, CAO B F, ZHOU J S, et al. Effective identification and quantitative evaluation of tight sandstone gas reservoir: A case study of the first Member of Shanxi Formation of Upper Paleozoic in southeastern Ordos Basin[J]. Acta Sedimentologica Sinica,2019,37(2):403-415.

34
陈罗元,钱玉贵,廖璐瑶,等.苏里格气田苏14井区中二叠统下石盒子组盒7段有效储层综合评价[J].矿物岩石,2021,41(2):109-117.

CHEN L Y, QIAN Y G, LIAO L Y, et al. Comprehensive evaluation of effective reservoir of He 7 member of Lower Shihezi Formation in Well Su 14 area of Sulige Gas Field[J]. Journal of Mineralogy and Petrology, 2021,41(2):109-117.

35
赵卫,潘新志,刘亚青,等.临兴地区上古生界致密砂岩气成藏主控因素[J].非常规油气,2020,7(3):31-36,30.

ZHAO W, PAN X Z, LIU Y Q, et al. Main controlling factors of tight sandstone gas accumulation in Upper Paleozoic in linxing area[J]. Unconventional Oil & Gas,2020,7(3):31-36,30.

36
LIU D K, SUN W, REN D Z, et al.Quartz cement origins and impact on storage performance in Permian Upper Shihezi Formation tight sandstone reservoirs in the northern Ordos Basin, China[J].Journal of Petroleum Science and Engineering, 2019, 178:485-496.

37
JIA C Y, JIA A L, ZHAO X, et al.Architecture and quantitative assessment of channeled clastic deposits, Shihezi sandstone (Lower Permian), Ordos Basin, China[J].Journal of Natural Gas Geoscience, 2017,2(1):11-20.

38
CUI H Y, ZHONG N N,LI J, et al.Study on the lower limits of petrophysical parameters of the Upper Paleozoic tight sandstone gas reservoirs in the Ordos Basin, China[J].Journal of Natural Gas Geoscience, 2017,2(1):21-28.

文章导航

/