收稿日期: 2016-10-31
修回日期: 2017-02-22
网络出版日期: 2017-05-10
基金资助
国家科技重大专项“涪陵页岩气勘探开发示范工程”子课题“涪陵页岩气气藏工程技术示范”(编号:2016ZX05060-002);页岩油气富集机理与有效开发国家重点实验室开放基金“考虑复杂缝网的页岩气多段压裂水平井产能半解析预测方法”(编号:GSYKY-B09-33)联合资助.
Pressure dynamic analysis model of MFHW in induced permeability field
Received date: 2016-10-31
Revised date: 2017-02-22
Online published: 2017-05-10
体积压裂技术是致密、页岩气藏开发的关键技术。目前在试井解释和产能评价的研究中尚缺乏考虑压裂改造体积(SRV)内复杂非均质性诱导渗透率场的渗流数学模型。为此,在假设渗透率与距主裂缝面的距离呈指数和线性式关系的基础上建立起诱导渗透率场模型,将其与渗流场进行耦合,并结合线性流模型创建有限导流能力多段压裂水平井渗流数学模型,结合Bessel函数理论和GWR数值反演算法得到真实空间的压力解,绘制气井压力动态曲线,分析SRV区诱导渗透率分布情况等特征参数对气井压力变化规律的影响。结果表明,SRV区渗透率呈递减型分布时,气井压力动态曲线过早出现边界响应特征,反之气井生产动态曲线在边界反应段之前会出现平缓甚至下凹的过渡段,且容易将其误认为为径向流动阶段。结合现场实例,分别进行了2种渗透率场条件下的压力恢复试井曲线拟合,并与常规模型拟合情况进行了对比,新模型能够解释试井恢复曲线异常段出现的原因,拟合得到更加符合实际的储层和压裂改造参数。
王妍妍,王卫红,胡小虎,刘华,郭艳东 . 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017 , 28(5) : 785 -791 . DOI: 10.11764/j.issn.1672-1926.2017.02.002
Volume fracturing is the key technique in development of tight or shale gas reservoirs.Well test interpretation is lack of research on induced permeability field with stronger heterogeneity.Considering fracturing treatment inducing a permeability alteration around the hydraulic fracture,an induced-permeability-field model on the hypothesis that induced permeability field can be properly represented by a linear or exponential function and incorporate the monotonic decrease or increase of permeability enhancement as the distance to the hydraulic fracture increases,which is coupled to flow field model.Combined withlinear flow,the seepage model for multi-fractured horizontal well with finite conductivity in the induced permeability field has been built.By multiple variable substitutions,Bessel function and GWR numerical inversion,pressure solution has been obtained.Influence of characteristic parameters,such as distribution of induced permeability,on the pressure performance is analyzed.Existence of induced permeability field will result in early appearance of boundary response or flat transition region.Combined with the field case,the pressure buildup curve fitting in two permeability fields has been finished.Compared with the interpretation result,the reason for the existence of abnormal stage has been introduced in the new model.By curve fitting,the more reasonable parameters in SRV can be obtained.
[1]El-Banbi A H,Wattenbarger R A.Analysis of linear flow in gas well production[C]//SPE Gas Technology Symposium.Calgary,Alberta,Canada:Society of Petroleum Engineers,1998.
[2]Liu Xuli.Well test analysis and evaluation after shale-gas volume fracturing stimulation[J].Natural Gas Industry,2016,36(8):66-72.[刘旭礼.页岩气体积压裂压后试井分析与评价[J].天然气工业,2016,36(8):66-72.]
[3]Zeng Fanghui,Wang Shuyi,Guo Jianchun,et al.Yield calculation of a fractured horizontal well with a non-uniform gas flow on fracture surface[J].Natural Gas Industry,2014,34(5):100-105.[曾凡辉,王树义,郭建春,等.裂缝面非均匀流入的气藏压裂水平井产量计算[J].天然气工业,2014,34(5):100-105.]
[4]Fan Dongyan,Yao Jun,Sun Hai,et al.Transient flow model of stage-fractured horizontal wells in shale gas reservoirs[J].Journal of China University of Petroleum,2014,38(5):116-123.[樊冬艳,姚军,孙海,等.页岩气藏分段压裂水平井不稳
[HJ1.5mm]定渗流模型[J].中国石油大学学报:自然科学版,2014,38(5):116-123.]
[5]Brown M L,Ozkan E,Raghavan R S,et al.Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[J].SPE Reservoir Evaluation & Engineering,2009,14(6):663-676.
[6]Gildin E,Valko P P,Fuentes-Cruz G.Analyzing production data from hydraulically fractured wells:the concept of induced permeability field[J].SPE Reservoir Evaluation & Engineering,2013,17(2):220-232.
[7]Ge J,Ghassemi A.Permeability enhancement in shale gas reservoirs after stimulation by hydraulic fracturing[C]//Rock Mechanics/Geomechanics Symposium.San Francisco,California,USA,American Rock Mechanics Association,2011.
[8]Liu Yaowen,Liao Rugang,Zhang Yuan,et al.Application of surface-downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment[J].Natural Gas Industry,2016,36(10):56-62.[刘尧文,廖如刚,张远,等.涪陵页岩气田井地联合微地震监测气藏实例及认识[J].天然气工业,2016,36(10):52-62.]
[9]Warpinski N R,Mayerhofer M,Agarwal K,et al.Hydraulic-fracture geomechanics and microseismic-source mechanisms[J].SPE Journal,2013,18(18):766-780.
[10]Stalgorova E,Mattar L.Practical analytical model to simulate production of horizontal wells with branch fractures[C]//SPE Canadian Unconventional Resources Conference.Calgary,Alberta,Canada:Society of Petroleum Engineers,2012.
[11]Barker J A.A generalized radial flow model for hydraulic tests in fractured rock[J].Water Resources Research,1988,24(24):1796-1804.
[12]Maxwell S,Waltman C,Warpinski N,et al.Imaging seismic deformation induced by hydraulic fracture complexity[J].SPE Reservoir Evaluation & Engineering,2009,12(12):48-52.
[13]Medeiros F,Ozkan E,Kazemi H.Productivity and drainage area of fractured horizontal wells in tight gas reservoirs[J].SPE Reservoir Evaluation & Engineering,2013,11(5):902-911.
[14]Chen Ming,Xu Yun,Wu Qi,et al.Algorithm for multi-fracture propagation morphology in horizontal well volume fracturing:Investigation on different fracture distribution patterns[J].Natural Gas Industry,2016,36(8):79-87.[陈铭,胥云,吴奇,等.水平井体积改造多裂缝扩展形态算法--不同布缝模式的研究[J].天然气工业,2016,36(8):79-87]
[15]Palmer I,Moschovidis Z,Cameron J.Modeling shear failure and stimulation of the Barnett shale after hydraulic fracturing[C]//SPE Hydraulic Fracturing Technology Conference.College Station,Texas:U.S.A,Society of Petroleum Engineers,2007.
[16]Li Fanhua,Liu Ciqun.Pressure transient analysis of finite fractal reservoirs[J].Journal of Southwest Petroleum Institute,1997,19(2):47-50.[李凡华,刘慈群.有界分形油藏的压力动态分析[J].西南石油大学学报:自然科学版,1997,19(2):47-50.]
[17]Watson G N.A Treatise on the Theory of Bessel Functions[M].Oxford,England:Cambridge University Press,1966:1122-1128.
[18]Valkó P P,Abate J.Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion[J].Computers & Mathematics with Applications,2004,48(3-4):629-636.
[19]Stalgorova K,Mattar L.Analytical model for unconventional multifractured composite systems[J].SPE Reservoir Evaluation & Engineering,2013,16(3):246-256.
/
〈 |
|
〉 |