天然气地质学

裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例

展开
  • 1.长江大学录井技术与工程研究院,湖北 荆州 434023;
    2.中国石油大港油田公司勘探开发研究院,天津 300280;
    3.油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249;
    4.中国石油大港油田公司,天津 300280;
    5.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
刘岩(1985-),男,河南泌阳人,博士后,主要从事油气地球化学的教学与科研工作. E-mail:mail_liuyan@163.com.

收稿日期: 2017-01-09

  修回日期: 2017-03-27

  网络出版日期: 2017-05-10

基金资助

国家自然科学基金(编号:41503034;41472095);油气资源与探测国家重点实验室开放课题(编号:PRP/open-1509)联合资助.

Hydrocarbon phase limit and conversion process in the deep formation of rift lacustrine basin from Qikou Sag of Bohai Bay Basin,eastern China

Expand
  • 1.Institute of Mud Logging Technology and Engineering,Yangtze University,Jingzhou 434023,China;
    2.Exploration and Development Research Institute,Dagang Oilfield Company of PetroChina,Tianjin 300280,China;
    3.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249 China;
    4.Dagang Oilfield Company of PetroChina,Tianjin 300280,China;
    5.Langfang Branch of Research Institute of Petroleum Exploration& Development,PetroChina,Langfang 065007 China

Received date: 2017-01-09

  Revised date: 2017-03-27

  Online published: 2017-05-10

摘要

为适应东部盆地向深层_超深层勘探的需求,通过歧口凹陷沙河街组典型原油的裂解生气模拟实验,采用原油裂解生烃动力学特征研究深层烃类流体相态变化规律。结果表明:原油裂解气生烃动力学可以方便地研究地质条件下原油裂解程度,进而判断地下油气相态的理论深度极限。在固定频率因子A=1014S-1前提下,渤海湾盆地歧口凹陷沙河街组原油裂解成C1—C5的活化能分布在250~270kJ/mol之间,平均活化能E0=255.47kJ/mol,高于海相原油的245kJ/mol(59kCal/mol)。在同等升温速率条件下,其裂解生气路径与西部海相原油存在明显差异。以歧口凹陷地层沉积埋藏史确定的热史路径进行动力计算结果显示,歧口凹陷深层单一液相原油存在的理论深度极限为5 700m,凝析油气存在的理论深度极限为6 700m。结合歧北次凹和滨海具体地质条件进行油气藏相态演变过程分析,结果表明:在实际地质条件下,干酪根的裂解生气和更深部气源的充注气侵,使得原有油藏提前达到极高的气油比,纯液相原油提前消失。油气运移到浅部过程中受温—压条件的变化,导致了油气的分异和相态转换。温度和时间决定的生烃效应是深层油气相态的内因,在具体分析单个油藏相态时,不仅要考虑油气来源、组成、油气成藏过程,尤其还要注意后期构造活动造成的油气调整改造,这些是后期油气相态分异转化的外因。

本文引用格式

刘岩,杨池银,肖敦清,廖前进,周立宏,于学敏,国建英,蒲秀刚,姜文亚,邹磊落,聂国振,刘庆新,滑双君 . 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017 , 28(5) : 703 -712 . DOI: 10.11764/j.issn.1672-1926.2017.04.001

Abstract

It is an important research direction for the prediction of hydrocarbon phase in the reservoir during the deep exploration of rift basins in eastern China.The typical lacustrine crude oil of Shahejie Formation in Qikou Sag was used for oil cracking to gas simulation experiment by the gold tube in this paper.Then,the kinetic parameters obtained from the experimental data were studied during the cracking reactions and the hydrocarbon phase conversion process under geological conditions.The results showed that the activation energy of the oil cracking to gas from the BH-28 lacustrine crude oil ranged from 250kJ/mol to 270kJ/mol with an average of Eo=255.47kJ/mol,and the frequency factor was about A=1014S-1.It is higher than that of typical marine oil Eo=246.97kJ/mol (59kCal/mol).Using these kinetic parameters,the simulated cracking process of the lacustrine oil of Shahejie formation was far different from that of marine oil from western China under the same geological heating rate (3℃/Ma).And the simulated oil cracking degree in Well Niudong-1 is 73.9%,almost the same with the conversion cracking degree (60%-75%) by concentrations of 3,4-dimethyldiamantane.The kinetics of oil cracking gas could be used to investigate the oil cracking degree easily,then to get the theoretical separate oil phase depth limit.By using this model,oil in Qikou Sag,as a theoretical separate phase destruction,occurs above 5 700m depth limit (RO is about 2.0%,reservoir temperature=209℃,with cracking transition C of 62.5%),and condensate gas destruction occurs above 6 700m depth limit (RO is about 3.2%,reservoir temperature=240℃,with C to 99%) under the geological conditions from Qikou Sag.Actually,the hydrocarbon phase is affected by many factors.For example,migration and changes of temperature and pressure conditions have great influence on phase conversion behavior.The injection of gas,originated from kerogen cracking gas and oil cracking gas in deeper,could increase GOR and the real separate phase depth would reduce.

参考文献

[1]Jia Chengzao,Pang Xiongqi.Research processes and main development directions of deep hydrocarbon geological theories[J].Acta Petrolei Sinica,2015,36(12):1457-1469.[贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.]
[2]Hu Wenrui,Bao Jingwei,Hu Bin.Trend and progress in global oil and gas exploration[J].Petroleum Exploration and Development,2013,40(4):409-413.[胡文瑞,鲍敬伟,胡滨.全球油气勘探进展与趋势[J].石油勘探与开发,2013,40(4):409-413.]
[3]Sun Longde,Fang Chaoliang,Sa Liming,et al.Innovation and prospect of geophysical technology in the exploration of deep oil and gas[J].Petroleum Exploration and Development,2015,42(4):414-424.[孙龙德,方朝亮,撒利明,等.地球物理技术在深层油气勘探中的创新与展望[J].石油勘探与开发,2015,42(4):414-424.]
[4]Sun Longde,Zou Caineng,Zhu Rukai,et al.Formation,distribution and potential of deep hydrocarbon resources in China[J].Petroleum Exploration and Development,2013,40(6):641-649.[孙龙德,邹才能,朱如凯,等.中国深层油气形成、分布与潜力分析[J].石油勘探与开发,2013,40(6):641-649.]
[5]Tissot  B  P,Welte D  H.Petroleum Formation and Occurrence[M].2nd ed.Berlin,Heidelberg:Springer-Verlag,1984:1-669.
[6]Horsfield B,Schenk H J,Mills N,et al.An investigation of the in reservoir conversion of oil to gas:Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J].Organic Geochemistry,1992,19(1/3):191-204.
[7]Pepper A S,Dodd T A.Simple kinetic models of petroleum formation.PartⅡ:Oil-gas cracking[J].Marine and Petroleum Geology,1995,12(3):321-340.
[8]Hunt J M.Petroleum Geochemistry and Geology[M].2nd ed.New York:W.H.Freeman and Company,1996:1-743.
[9]Behar F,Lorant F,Mazeas L.Elaboration of a new compositional kinetic schema for oil cracking[J].Organic Geochemistry,2008,39(6):764-782.
[10]Waples D W.The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[11]Lu Shuangfang,Xue Haitao,Zhong Ningning.The chemical kinetic study of the oil preservation threshold[J].Petroleum Exploration and Development,2002,29(6):1-3.[卢双舫,薛海涛,钟宁宁.石油保存下限的化学动力学研究[J].石油勘探与开发,2002,29(6):1-3]
[12]Zhu Guangyou,Zhang Shuichang.Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J].Acta Petrolei Sinica,2009,30(6):793-802.[朱光有,张水昌.中国深层油气成藏条件与勘探潜力[J].石油学报,2009,30(6):793-802.]
[13]Meihejef.The oil bearing temperature conditions on deep strata[J].Petroleum Geology Formation,1993,14(3/4):1-4.
[14][KG*5/6]Zhang Shuichang,Zhu Guangyou,Yang Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei Uplift,Tarim Basin[J].Acta Petrologica Sinica,2011.27(8):2447-2460.[张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.]
[15]Fu Deliang,Zhou Shixin,Li Jing,et al.Kinetics of oil cracking and the meaning of itsphase transition characteristics:Taking Well YS1 in northern Qaidam Basin as an example[J].Natural Gas Geoscience,2016,27(8):1500-1508.[付德亮,周世新,李靖,等.原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J].天然气地球科学,2016,27(8):1500-1508.]
[16]Tian Hui,Wang Zhaoming,Xiao Zhongyao,et al.Oil cracking to gases:Kinetic modeling and geological significance[J].Chinese Science Bulletin,2006,51(22):2763-2770.[田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.]
[17]Zhang Shuichang,Wang Zhaoming,Wang Feiyu,et al.Oil accumulation history in Tadong 2 oil reservoir in Tarim Basin,NW China:A case study of oil stability and cracking[J].Petroleum Exploration and Development,2004,31(6):25-31.[张水昌,王招明,王飞宇,等.塔里木盆地塔东2油藏形成历史:原油稳定性与裂解作用实例研究[J].石油勘探与开发,2004,31(6):25-31.]
[18][KG*5/6]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):211-218.[何坤,张水昌,米敬奎.原油裂解的动力学及控制因素研究[J].天然气地球科学,2011,22(2):211-218.]
[19]Zhao Xianzheng,Jin Fengming,Wang Quan,et al.Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin:Discovery and significance[J].Acta Petrolei Sinica,2011,32(6):915-927.[赵贤正,金凤鸣,王权,等.渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J].石油学报,2011,32(6):915-927.]
[20]Ma Anlai,Jin Zhijun,Liu Jinzhong.Hydrocarbon phase in the deep Cambrian of the Tarim Basin[J].Petroleum Geology & Experiment,2015,37(6):681-688.[马安来,金之钧,刘金钟.塔里木盆地寒武系深层油气赋存相态研究[J].石油实验地质,2015,37(6):681-688.]
[21]Li Xianqing,Yang Yunfeng,Tian Hui,et al.Study on kinetic parameters of crude oil cracking gas and its application[J].Acta Sedimentologica Sinica,2012,30(6):1156-1164.[李贤庆,仰云峰,田辉,等.原油裂解成气动力学参数及其应用研究[J].沉积学报,2012,30(6):1156-1164.]
[22]Li Xianqing,Yang Yunfeng,Feng Songbao,et al.Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J].Journal of China University of Mining& Technology,2012,41(3):397-405.[李贤庆,仰云峰,冯松宝,等.塔里木盆地原油裂解生烃特征与生气过程研究[J].中国矿业大学学报,2012,41(3):397-405.]
[23]Gao Shengjun,Chen Yicai,Li Yanjun,et al.Pyrolysis on crude oil and characteristics of Sha 4 member cracking gas,Dongying Depression[J].Natural Gas Geoscience,2009,20(1):32-35.[高生军,陈义才,李延钧,等.东营凹陷沙四段原油裂解热模拟实验及产物特征[J].天然气地球科学,2009,20(1):32-35.]
[24]Schenk H J,Primio R DI,Horsfield B.The conversion of oil into gas in petroleum reservoirs.Part 1:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7-8):467-481.
[25]Zhang Shuichang Hu Guoyi,Mi Jingkui,et al.Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J].Acta Petroleum Sinica,2013,34(S1):41-50.[张水昌,胡国艺,米敬奎,等.三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J].石油学报,2013,34(S1):41-50.]
[26]Liu Yan,Zhong Ningning,Chen Jianfa,et al.Accumulation history of the Changxing-Feixianguan oil cracked gas reservoirs in northeastern Sichuan[J].Science in China:Series D,2013,43(11):1819-1827.[刘岩,钟宁宁,陈践发,等.川东北长兴-飞仙关组原油裂解型气藏成藏史分析[J].中国科学:D辑,2013,(11):1819-1827.]
[27]Zhang Shuichang,Shuai Yanhua,Zhu Guangyou.TSR promotes the formation of oil-cracking to gas:Evidence from simulation experiment[J].Science in China:Series D,2008,51(3):451-455.[张水昌,帅燕华,朱光有.TSR促进原油裂解成气:模拟实验证据[J].中国科学:D辑,2008,38(3):307-311.]
[28]Zhao Xianzheng,Jin Fengming,Mi Jingkui,et al.Characteristics of diamondoids and light hydrocarbons from Niudong Field and implication for oil/gas origin[J].Natural Gas Geoscience,2014,25(9):1395-1402.[赵贤正,金凤鸣,米敬奎,等.牛东油气田原油中金刚烷和轻烃特征及其对油气成因的指示意义[J].天然气地球科学,2014,25(9):1395-1402.]
[29]Dieckmann V.Modeling petroleum formation from heterogeneous source rocks:The influence of frequency factors on activation genergy distribution and geological prediction[J].Marine and Petroleum Geology,2005,22(3):375-390.
[30]Claypool G E,Mancini E A.Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation,southwestern Alabama[J].AAPG Bulletin,1989,73(7):904-924.
[31]McCain W D,Bridges B Jr.Volatile oils and retrograde gases:What’s the difference[J].Petroleum Engineer International,1994,66(1):35-36.
[32]Hao Fang,Dong Weiliang,Zou Huayao,et al.Over pressure fluid flow and rapid accumulation of natural gas in Yinggehai Basin[J].Acta Petroleum Sinica,2003,24(6):7-12.[郝芳,董伟良,邹华耀,等.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏[J].石油学报,2003,24(6):7-12.]

文章导航

/