收稿日期: 2016-08-24
修回日期: 2017-01-07
网络出版日期: 2017-03-10
基金资助
国家自然科学基金项目(编号:41272339)资助.
The research on permeable model of hydraulic fractureand its application in the “three soft” coal seam
Received date: 2016-08-24
Revised date: 2017-01-07
Online published: 2017-03-10
为了探索水力压裂条件下由软煤、软顶和软底构成的特殊地质体(简称“三软”煤层)裂缝的扩展规律,以及压裂后储层的裂隙分布特征,结合河南焦作煤层气田的注水压裂试验,基于PKN模型的裂缝宽度假设与裂缝流动的摩阻压降规律,着重考虑软煤裂隙中压裂液的滤失因素,构建了水力压裂条件下“三软”矿区碎裂煤的裂缝扩展模型与渗透率计算模型,并运用地震实测法和渗透率反演计算法分别进行了验证。研究结果表明,实际施工条件下试验区二1煤层压裂后的裂缝几何特征大致相同,长度分布区间为81.85~139.23m,平均为100.41m;最大裂缝宽度区间为24.83~32.78mm,平均为27.32mm,裂缝长度与地震实测结果基本一致。应用裂缝渗透模型,进一步计算得到压裂后煤储层的渗透率一般在(9.21~86.61)×10-3μm2之间,平均为31.63×10-3μm2。与后期排采结果所得到的储层渗透率反演值相对比,二者基本吻合。由此可见,压裂改造后的煤储层的渗透率得到显著提高,裂缝扩展与裂缝渗透模型皆可应用于指导“三软”矿区的压裂抽采实践与产能预测。
王志荣,贺平,郭志伟,陈玲霞,徐培远 . 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017 , 28(3) : 349 -355 . DOI: 10.11764/j.issn.1672-1926.2017.01.009
In order to find out the crack propagation law in hydraulic fracturing conditions and crack distribution features for “Three Soft” coal seam, this paper combines the hydraulic fracturing test of coal seam gas field in Jiaozuo Henan based on the assumption of crack width in PKN model and frictional pressure drop law of fracture flowing. This paper focuses on fluid loss factors of fracturing fluid, finally the crack propagation and permeability calculation model of cataclastic coal under hydraulic fracturing was established, and it verified the result by earthquake measure method and retrieval algorithm. The results show that each crack of Ⅱ1 coal seam has roughly similar geometric feature. Its length is 81.85-139.23m with an average of 100.41m. The maximum width is 24.83-32.78mm with an average of 27.32mm, and the length results accord with the earthquake measurement. Based on the fracture permeation model, the permeability of coal reservoir is about (9.21-86.61)×10-3μm2 with an average of 31.63×10-3μm2. It’s easy to find the results are consistent with the later inversion reservoir permeability. Thus, after fracturing treatment, coal reservoir permeability is significantly improved. Crack propagation and fracture permeability model can be used for guiding fracturing gas extraction and predicating the productivity of the “Three Soft” coal seam.
[1]Wang Zhirong,Chen Lingxia,Cheng Congren,et al.Forecast of gas geological hazards for “Three-Soft” coal seams in gliding structural area[J].Journal of China University of Mining and Technology,2007,17(4): 484-488.
[2]Hu Xiangzhi,Wang Zhirong,Zhang Zhenlun.Coalbed Methane Exploitation and Gas Suck in “Three Soft”Mining Areas[M].Zhengzhou:Yellow River Water Conservancy Press,2011:125-130.[胡向志,王志荣,张振伦.煤层气开发与“三软”矿区瓦斯抽采[M].郑州:黄河水利出版社,2011:125-130.]
[3]Wang Zhirong,Han Zhongyang,Li Shukai,et al.Coupling characteristics of soft coal fracture damage and coalbed methane seepage under water fracturing condition[J].Journal of Henan Polytechnic University,2014,33(2):125-131.[王志荣,韩中阳,李树凯,等.注水压裂条件下软煤裂隙损伤与煤层气渗透耦合特征[J].河南理工大学学报,2014,33(2):125-131.]
[4]Wang Zhirong,Han Zhongyang,Li Shukai,et al.Mechanism of water-fracturing-induced permeability increment of “Three-Soft” coal seam and construction parameters determination[J].Natural Gas Geoscience,2014,25(5):739-746.[王志荣,韩中阳,李树凯,等.“三软”煤层注水压裂增透机理及瓦斯抽采施工参数确定[J].天然气地球科学,2014,25(5):739-746.]
[5]Yang Xiufu,Liu Xisheng,Chen Mian,et al.Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J].Drilling & Production Technology,1998,21(4):21-26.[杨秀夫,刘希圣,陈 勉,等.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-26.]
[6]Ni Xiaoming,Su Xianbo,Zhang Xiaodong.Coal Bed Methane Development Geology[M].Beijing:Chemical Industry Press,2012:27-36.[倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2012:27-36.]
[7]Yi Xiangyi,Lei Qun,Ding Yunhong.Technology and Application of Coal Bed Methane Hydraulic Fracturing[M].Beijing: Petroleum Industry Press,2012:124-148.[伊向艺,雷群,丁云宏.煤层气压裂技术及应用[M].北京:石油工业出版社,2012:124-148.]
[8]Zhang Xiaodong,Zhang Peng,Liu Hao,et al.Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs[J].Journal of China University of Mining &Technology,2013,42(4):573-579.[张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学报,2013,42(4):573-579.]
[9]Wang Chen.Study and application of the model of hydraulic fracture propagation based on the energy theory[J].Value Engineering,2013,23(22):327-328.[王臣.基于能量理论的水力裂缝扩展模型研究与应用[J].价值工程,2013,23(22):327-328.]
[10]Li Lindi,Zhang Shicheng,Geng Meng.A study of the propagation law of hydraulic fractures in coalbed gas reservoirs[J].Natural Gas Industry,2010,30(2):72-75.[李林地,张士诚,庚勐.煤层气藏水力裂缝扩展规律[J].天然气工业,2010,30(2):72-75.]
[11]Zhao Wanchun,Wang Tingting,Fu Xiaofei,et al.Study of damage tensor folding mutation model for fracturing rock mass and its application[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(2):3406-3411.[赵万春,王婷婷,付晓飞,等.水力压裂岩体损伤破裂折迭突变模型研究与应用[J].岩石力学与工程学报,2014,33(2):3406-3411.]
[12]Xu Lulu,Cui Jinbang,Huang Saipeng,et al.Analysis and application of fracture propagated model by hydraulic fracturing in coal-bed methane reservoir[J].Journal of China Coal Society,2014,39(10):2068-2074.[许露露,崔金榜,黄赛鹏,等.煤层气储层水力压裂裂缝扩展模型分析及应用[J].煤炭学报,2014,39(10):2068-2074.]
[13][KG*6/7]Xiao Hui.Research of Hydraulic Fracturing Dynamic Propagation in Fractured Reservoirs[D].Chengdu:Southwest Petroleum University,2014.[肖辉.裂缝性储层水力裂缝动态扩展理论研究[D].成都:西南石油大学,2014.]
[14]Cao Daiyong,Zhang Shouren,Ren Deyi.The influence of structural deformation on coalification:A case study of carboniferous coal measures in the northern foothills of the Dabie orogenie belt[J].Geological Review,2002,48(3):313-317.[曹代勇,张守仁,任德贻.构造变形对煤化进程的影响—以大别造山带北麓地区石炭纪含煤岩系为例[J].地质论评,2002,48(3):313-317.]
[15]Yu Shaocheng.Hydraulic Fracturing Technology Manual[M].Beijing: Petroleum Industry Press,2010:134-140.[俞绍诚.水力压裂技术手册[M].北京:石油工业出版社,2010:134-140.]
[16]Zhang Qi.Principle and Design of Oil Production Engineering[M].Dongying:China University of Petroleum Press,2006:250-260.[张琪.采油工程原理与设计[M].东营:中国石油大学出版社,2006:250-255.]
[17]Yang Xingdong.Evolution of fracture system and permeability during coal-bed methane extraction[J].Liaoning Chemical Industry,2013,42(10):1187-1189.[杨兴东.煤层气开采过程中裂缝系统与渗透率演化关系[J].辽宁化工,2013,42(10):1187-1189.]
[18]Li Hongxin. Analysis on CBM occurrence characteristics of Jiulishan Coalfield in Jiaozuo[J].Zhong Zhou Coal,2012,(9):4-7.[李宏欣.焦作九里山井田煤层气赋存特征分析[J].中州煤炭,2012,(9):4-7.]
[19]Zhang Gaoqun,Xiao Bing,Hu Yaya,et al.Application on novel active water fracturing fluid in coal-bed methane wells[J].Drilling Fluid & Completion Fluid,2013,30(1):66-68.[张高群,肖兵,胡娅娅,等.新型活性水压裂液在煤层气井的应用[J].钻井液与完井液,2013,30(1):66-68.]
[20]Song Jia,Lu Yuan,Li Yongshou,et al.Experiment research on fracture fluid dynamic filtration of coal rocks[J].Reservoir Evaluation and Development,2013,1(1):74-77.[宋佳,卢渊,李永寿,等.煤岩压裂液动滤失实验研究[J].油气藏评价与开发,2013,1(1):74-77.]
[21]Zhang Jiangguo,Du Dianfa,Hou Jian,et al.Oil and Gas Reservoirs Porous Flow Mechanics[M].Dongying:China University of Petroleum Press,2010:115-125.[张建国,杜殿发,侯健,等.油气层渗流力学[M].东营:中国石油大学出版社,2010:115-125.]
/
〈 |
|
〉 |