天然气开发

页岩气藏压裂水平井产量递减曲线分析法

展开
  • 西南石油大学石油与天然气工程学院,四川 成都 610500
魏明强(1986-),男,四川隆昌人,博士研究生,主要从事油气藏渗流、试井以及产能动态分析研究. E-mail:weiqiang425@163.com.

收稿日期: 2015-06-10

  修回日期: 2015-07-22

  网络出版日期: 2019-09-20

基金资助

国家重点基础研究发展计划项目“页岩气气藏工程方法基础研究”(编号:2013CB228005)资助.

Advanced production decline analytical method for a multi-fractured horizontal well in shale gas reservoirs

Expand
  • School of Petroleum & Natural Gas Engineering,Southwest Petroleum University,Chengdu 610500,China

Received date: 2015-06-10

  Revised date: 2015-07-22

  Online published: 2019-09-20

摘要

页岩气藏属于典型的超低孔、超低渗气藏,一般采用多级压裂水平井才具有经济开采价值。与常规气藏相比,页岩储层中气体流动存在吸附解吸、扩散和渗流等多重运移机制,并且页岩基质表面的气体吸附解吸、扩散与压力间存在很强的非线性关系,采用解析/半解析法开展其产量递减分析存在很大的局限性。为此,基于压裂水平井非结构PEBI网格,引入尘气模型建立并推导了综合考虑页岩气藏吸附解吸、扩散和达西流运移机制下的无限导流压裂水平井产量递减数学模型,结合Blasingame产量递减方法原理计算获得了页岩气藏无限导流压裂水平井Blasingame产量递减典型曲线,讨论了相关参数对典型曲线的影响。结果表明:页岩气藏无限导流压裂水平井产量递减曲线划分为地层线性流、裂缝早期径向流、复合线性流和边界拟稳定流4个流动阶段;吸附解吸作用越强,q/Δpp、(q/Δpp)i和(q/Δpp)id值越大,且PL对典型曲线的影响是非线性的,而VL对其影响是线性的;扩散系数具有提高超低渗页岩储层的气体流动能力,起到增加气井产量的作用;渗透率、裂缝数量和裂缝半长越大,产量递减典型曲线对应值就越大;裂缝间距主要影响产量递减曲线复合线性流段,裂缝间距越大,典型曲线进入复合线性流的时间越晚;井控半径主要影响典型曲线拟稳定流段,井控半径越大,系统进入拟稳定流段的时间越晚。

本文引用格式

魏明强, 段永刚, 方全堂, 李安豪, 卢婷 . 页岩气藏压裂水平井产量递减曲线分析法[J]. 天然气地球科学, 2016 , 27(5) : 898 -904 . DOI: 10.11764/j.issn.1672-1926.2016.05.0898

Abstract

Multi-stage fractured horizontal well (MFHW) technology is widely applied in typical ultra-low porosity and permeability shale gas reservoirs.Compared to conventional reservoirs,there are several transport mechanisms such as adsorption/desorption,diffusion and Darcy flow in the shale gas reservoirs.And there is a significant limitation of using analytical/semi-analytical method to analyze transient pressure behaviors since a strong nonlinear relationship between adsorption/desorption,diffusion and pressure.Thus,Based on multi-fractured horizontal well(MFHW)’s perpendicular bisection (PEBI) grids,the production decline numerical mathematical model of infinite conductive MFHW which considers adsorption/desorption,diffusion and Darcy flow in shale gas reservoir is established and derived by introducing the Dusty Gas Model.According to the basic principle of Blasingame production decline,the Blasingame production decline typical curves are calculated through computer programming.The results show that the flow behaviours of infinite conductive MFHW’s Blasingame production decline typical curves are divided into four stages (i.e.,early formation linear flow around fracture,early radial flow,compound linear flow,and pseudo-radial elliptic flow).The effect of adsorption/desorption is stronger,q/Δpp、(q/Δpp)and (q/Δpp)idvalue become larger,meanwhile the typical curves are influenced by PL nonlinearly,and by VL linearly.The flow capability in shale gas reservoirs with ultra-permeability and the well rate can be improved by diffusion parameter.As the formation permeability (k),fracture number (nf),and fracture half-length (xf) increase,the values of q/Δpp、(q/Δpp)i and (q/Δpp)id of the production decline type curves become larger.The fracture spacing df influences the compound linear flow stage of production decline typical curves,and the compound linear flow appears later with df increasing.And the pseudo-radial flow is mainly affected by distance from the well to the circular boundary (re).When re increases,the pseudo-radial flow appears lately.

参考文献

[1]Sondergeld C H,Newsham K E,Rice M C,et al.Petrophysical Considerations in Evaluating and Producing Shale Gas Resources[C].SPE Unconventional Gas Conference,23-25 February,Pittsburgh,Pennsylvania,USA.SPE 131768.2010.
[2]Freeman C M,Moridis G J,Blasingame T A.A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems[J].Transport in Porous Media,2011,90(1):253-268.
[3]Mi Lidong,Jiang Hanqiao,Li Junjian.Investigation of shale gas numerical simulation method based on discrete fracture network model[J].Natural Gas Geoscience,2014,25(11):1795-1803.[糜利栋,姜汉桥,李俊健.页岩气离散裂缝网络模型数值模拟方法研究[J].天然气地球科学,2014,25(11):1795-1803.]
[4]Yao Jun,Sun Hai,Fan Dongyan,et al.Transport mechanisms and numerical simulation of shale gas reservoirs[J].Journal of China University of Petroleum:Edition of Natural Sciences,2013,37(1):91-98.[姚军,孙海,樊冬艳,等.页岩气藏运移机制及数值模拟[J].中国石油大学学报:自然科学版,2013,37(1):91-98.]
[5]Zhang Zhiying,Yang Shengbo.On the adsorption and desorption trend of shale gas[J].Journal of Experiment Mechanics,2012,27(4):492-497.[张志英,杨盛波.页岩气吸附解吸规律研究[J].实验力学,2012,27(4):492-497.]
[6]Wei M,Duan Y,Fang Q,et al.Mechanism model for shale gas transport considering diffusion,adsorption/desorption and Darcy flow[J].Journal of Central South University,2013,20(7):1928-1937.
[7]Li D,Xu C,Wang J Y,et al.Effect of Knudsen diffusion and Langmuir adsorption on pressure transient response in tight-and shale-gas reservoirs[J].Journal of Petroleum Science and Engineering,2014,124:146-154.
[8]Arps J J.Analysis of decline curves[J].Transactions of the American Institute of Mining.Metallurgical and Petroleum Engineers,1945,160:228-247.
[9]Fetkovich M J.Decline curve analysis using type curves[J].Journal of Petroleum Technology,1980,32(6):1065-1077.
[10]Palacio J C,Blasingame T A.Unavailable-Decline-Curve Analysis Using Type Curves:Analysis of Gas Well Production Data[C].Low Permeability Reservoirs Symposium,26-28 April,Denver,Colorado.SPE 25909.1993.
[11]Xu Mengya,Ran Qiquan,Li Ning,et al.A new model of dynamic inversion for fractured wells in stress-sensitivity reservoir[J].Natural Gas Geoscience,2014,25(12):2508-2064.[徐梦雅,冉启全,李宁,等.应力敏感性致密气藏压裂井动态反演新方法[J].天然气地球科学,2014,25(12):2508-2064.]
[12]Shih M Y,Blasingame T A.Decline Curve Analysis Using Type Curves:Horizontal Wells[C].SPE 29572.1995.
[13]Clarkson C R,Jordan C L,Ilk D,et al.Production Data Analysis of Fractured and Horizontal CBM Wells[C].SPE Eastern Regional Meeting,23-25 September,Charleston,West Virginia,USA.SPE 125929.2009.
[14]Zareenejad M H,Ghanavati M,Asl A K.Production data analysis of horizontal wells using vertical well decline models:A field case study of an oil field[J].Petroleum Science and Technology,2014,32(4):418-425.
[15]Nobakht M,Mattar L,Moghadam S,et al.Simplified Yet Rigorous Forecasting of tight/Shale Gas Production in Linear Flow[C].SPE Western Regional Meeting,27-29 May,Anaheim,California,USA.SPE 133615.2010.
[16]Nobakht M,Clarkson C R,Kaviani D.New type curves for analyzing horizontal well with multiple fractures in shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2013,10:99-112.
[17]Yao Jun,Sun Hai,Fan Dongyan,et al.Transport mechanisms and numerical simulation of shale gas reservoirs[J].Journal of China University of Petroleum:Edition of Natural Sciences,2013,37(1):91-98.[姚军,孙海,樊冬艳,等.页岩气藏运移机制及数值模拟[J].中国石油大学学报:自然科学版,2013,37(1):91-98.]
[18]Gao C,Lee J W,Spivey J P,et al.Modeling Multilayer Gas Reservoirs Including Sorption Effects[C].SPE Eastern Regional Meeting,8-10 November,Charleston,West Virginia.SPE 29173.1994.
[19]An Yongsheng,Wu Xiaodong,Han Guoqing.Application of numerical simulation of complex well based on PEBI grid[J].Journal of China University Petroleum:Science and Technology,2008,31(6):60-63.[安永生,吴晓东,韩国庆.基于混合 PEBI 网格的复杂井数值模拟应用研究[J].中国石油大学学报:自然科学版,2008,31(6):60-63.]
[20]Cai Qiang,Yang Qin,Meng Xianhai,et al.Research on 2D PEBI grid generation[J].Journal of Engineering Graphic,2005,26(2):69-72.[蔡强,杨钦,孟宪海,等.二维 PEBI 网格的生成[J].工程图学学报,2005,26(2):69-72.]
[21]Li Yukun,Yao Jun.The automatic dissected technology of Delaunay triangular grids for complex fault-block oil reservoir[J].Petroleum Geology and Recovery Efficiency,2006,13(3):58-60.[李玉坤,姚军.复杂断块油藏 Delaunay 三角网格自动剖分技术[J].油气地质与采收率,2006,13(3):58-60.]

文章导航

/