收稿日期: 2015-04-07
修回日期: 2015-05-22
网络出版日期: 2015-08-10
基金资助
国家重点基础研究发展计划("973”)项目课题(编号:2012CB214705);国家自然科学基金项目(编号:41372163;41172145);2014年度山西省煤基重点科技攻关项目(编号:MQ2014-01;MQ2014-12);山西省煤层气联合研究基金资助项目(编号:2014012001);湖北省自然科学基金面上项目(编号:2014CFB169)联合资助.
Experimental Analysis of Methane Adsorption-diffusion Property in High-maturity Organic-rich Shale and High-Rank Coal
Received date: 2015-04-07
Revised date: 2015-05-22
Online published: 2015-08-10
煤/页岩中甲烷的吸附—扩散性能是煤层气/页岩气资源评价的关键参数之一。通过对晋城矿区寺河井田二叠系山西组3号煤层样和华南古生界下志留统龙马溪组页岩样进行低温液氮和甲烷等温吸附实验,剖析了高演化富有机质页岩和高煤阶煤中甲烷的吸附—扩散性能,建立了煤/页岩中甲烷的吸附—扩散性模型,对比分析了煤/页岩中甲烷的吸附—扩散性能的差异性和控制机理。结果表明,高演化富有机质页岩样和高煤阶煤样的孔容均主要由介孔和大孔贡献,比表面积主要由微孔和介孔贡献,且高演化富有机质页岩样纳米孔隙更发育,比表面积和孔容要大于煤样。高演化富有机质页岩和高煤阶煤中甲烷的吸附和扩散规律服从Langmuir方程,高演化富有机质页岩中甲烷吸附性能明显低于高煤阶煤,且随着高演化富有机质页岩TOC含量的增加而增高;但其对甲烷扩散性能要高于高煤阶煤一个数量级。高演化富有机质页岩样中孔隙多为开放型,而高阶煤基质孔隙多为半封闭型。对于半封闭型孔隙,强吸附质的溶入会改变吸附剂的大分子结构,其吸附与解吸过程不是可逆的,存在解吸滞后现象,导致高演化富有机质页岩与高煤阶煤中甲烷解吸—扩散过程与扩散—吸附过程中的扩散性能差异性。
孟召平,刘金融,李国庆 . 高演化富有机质页岩和高煤阶煤中甲烷吸附—扩散性能的实验分析[J]. 天然气地球科学, 2015 , 26(8) : 1499 -1506 . DOI: 10.11764/j.issn.1672-1926.2015.08.1499
Methane adsorption-diffusion property in coalbed/shale is one of the key factors for coalbed methane/shale gas resource evaluation.With No.3 coal seam of Permian Shanxi Formation in Sihe coalfield Jincheng mine area and shale of Longmaxi Formation in Lower Silurian of Paleozoic in south China as study objects,the nano-pore system determination using low temperature liquid nitrogen adsorption method and methane adsorption-diffusion experiments of manometer method was conducted,methane adsorption-diffusion properties of high-maturity organic-rich shale samples and high-rank coal sample were elucidated,and then a mathematical model of methane adsorption-diffusion in coal/shale was established,finally the difference of methane adsorption-diffusion in coal and shale and its controlling mechanism were analyzed.It turns out that,meso-pores and macro-pores contribute in a major way to the pore volume of high-maturity organic-rich shale and coal samples and micro-pores and meso-pores contribute in a major way to the specific surface area;the nano-pore system is more developed in shale samples than that in coal sample and the specific surface area and pore volume in shale samples are bigger than that in coal samples;the methane adsorption-diffusion in coal and shale samples can be governed by Langmuir Equation,high-maturity organic-rich shale has a much lower methane adsorption capacity than high-rank coal and the methane adsorption capacity of shale increases with the increase of total organic carbon;open pores dominate in high-maturity organic-rich shale samples while semi-sealed pores dominate in high-rank coal sample;for semi-sealed pores,the dissolution of strong adsorbate into adsorbent will alter the macromolecular structure of adsorbent and result in the irreversibility of adsorption and desorption,that is,desorption hysteresis;therefore the diffusion properties during methane desorption-diffusion are different from that during methane diffusion-adsorption in high-maturity organic-rich shale and coal.
Key words: Organic-rich shale rock; High rank coal; Adsorption; Diffusion
[1]Zhang Jinchuan,Jiang Shengling,Tang Xuan,et al.Accumulation types and resources characteristics of shale gas in China[J].Natural Gas Industry,2009,29(12):109-114.[张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点[J].天然气工业,2009,29(12):109-114.]
[2]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.]
[3]Meng Zhaoping,Liu Cuili,Ji Yiming.Geological conditions of coalbed methane and shale gas exploitation and their comparison analysis[J].Journal of China Coal Society,2013,38(5):728-736.[孟召平,刘翠丽,纪懿明.煤层气/页岩气开发地质条件及其对比分析[J].煤炭学报,2013,38(5):728-736.]
[4]Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.]
[5]Practice Books Editorial Committee of Shale Gas Geological Exploration and Development.New Development on Shale Gas Exploration in North America[M].Beijing:Petroleum Industry Press,2009.[页岩气地质与勘探开发实践丛书编委会编.北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009.].
[6]Ross D J K,Bustin R M.Characterizing the shale resource potential of Devonian-Mississipian strata in the Western Canada sedimentary basin,Application of an integrated formation evaluation[J].AAPG Bulletin,2008,92(1):87-125.
[7]Long Youkang.Lower Paleozoic shale gas exploration potential in the central Yangtze area,China[J].Geological Bulletin of China,2011,30(2/3):344-348.[龙幼康.中扬子地区下古生界页岩气的勘探潜力[J].地质通报,2011,30(2/3):344-348.]
[8]Pu Boling,Jiang Youlu,Wang Yi,et al.Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J].Acta Petrolei Sinica,2010,31(2):225-230.[蒲泊伶,蒋有录,王毅,等.四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J].石油学报,2010,31(2):225-230.]
[9]Wei Mingqiang,Duan Yonggang,Fang Quantang,et al.Current research situation of porosity & permeability characteristics and seepage mechanism of shale gas reservoir[J].Reservoir Evaluation and Development,2011,34(4):62-66.[魏明强,段永刚,方全堂,等.页岩气藏孔渗结构特征和渗流机理研究现状[J].油气藏评价与开发,2011,34(4):62-66.]
[10]Moore A T.Coalbed methane:A review[J].International Journal of Coal Geology,2012,101:38-81.
[11]Meng Zhaoping,Zhang Jincai,Wang Rui.In-situ stress,pore pressure,and stress-dependent permeability in the southern Qinshui Basin[J].International Journal of Rock Mechanics & Mining Sciences,2011,48:122-131.
[12][JP2]Meng Zhaoping,Li Guoqing.Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors[J].Engineering Geology,2013,162:108-117.[JP]
[13]Li Guoqing,Meng Zhaoping,Wang Baoyu.Diffusion and seepage mechanisms of high rank coal-bed methane reservoir and its numerical simulation at early drainage rate[J].Journal of China Coal Society,2014,39(9):1919-1926.[李国庆,孟召平,王保玉.高煤阶煤层气扩散—渗流机理及初期排采强度数值模拟[J].煤炭学报,2014,39(9):1919-1926.]
[14]Li Zhifeng,Li Zhiping,Miao Lili,et al.Gas flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geoscience,2013,24(5):1042-1047.[李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,24(5):1042-1047.]
[15]Pan Z J,Connell L D.Modelling permeability for coal reservoirs:A review of analytical models and testing data[J].International Journal of Coal Geology,2012,92:1-44.
[16]Clarkson R C,Bustin M R.The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study.1.Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
[17]Clarkson R C,Bustin M R.The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study.2.Adsorption rate modeling[J].Fuel,1999,78(11):1345-1362.
[18]Saghafi A,Faiz M,Roberts D.CO2 storage and gas diffusivity properties of coals from Sydney Basin,Australia[J].International Journal of Coal Geology,2007,70(1-3):240-254.
[19]Shi J Q,Durucan S.A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection[J].Fuel,2003,82(10):1219-1229.
[20]Smith M D,Williams L F.Diffusion effects in the recovery of methane from coalbeds[J].SPE Journal,1984,24(5):529-535.
[21]Ruckenstein E,Vaidyanathan S A,Youngquist R G.Sorption by solids with bidisperse pore structures[J].Chemical Engineering Science,1971,26(9):1305-1318.
[22]Zhang Shiyin,Sang Shuxun.Adsorption-diffusioncoefficient analysis of coal-bed methane in different rank coals[J].Coal Geology of China,2009,21(3):24-27.[张时音,桑树勋.不同煤级煤层气吸附扩散系数分析[J].中国煤炭地质,2009,21(3):24-27.]
[23]Zhang Dengfeng,Cui Yongjun,Li Songgeng,et al.Adsorption and diffusion behaviors of methane and carbon dioxide on various rank coals[J].Journal of China Coal Society,2011,36(10):1693-1698.[张登峰,崔永君,李松庚,等.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报,2011,36(10):1693-1698.]
[24]Meng Zhaoping,Tian Yongdong,Li Guofu.Theory and Method of Coalbed Methane Development Geology[M].Beijing:Science Press,2010.[孟召平,田永东,李国富.煤层气开发地质学理论与方法[M].北京:科学出版社,2010.]
[25]Lu Longfei,Cai Jingong,Liu Wenhui,et al.Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J].Oil & Gas Geology,2013,34(1):16-26.[卢龙飞,蔡进功,刘文汇,等.泥岩与沉积物中黏土矿物吸附有机质的三种赋存状态及其热稳定性[J].石油与天然气地质,2013,34(1):16-26.]
[26]Wu Jingshu,Yu Bingsong,Li Yuxi.Adsorption capacity of shale gas and controlling factors from the well Yuye 1 at thesoutheast of Chongqing[J].Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(4):40-48.[武景淑,于炳松,李玉喜.渝东南渝页1井页岩气吸附能力及其主控因素[J].西南石油大学学报:自然科学版,2012,34(4):40-48.]
[27]Wang Maozhen,Liu Shaobo,Ren Yongju,et al.Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J].Geological Review,2015,61(1):207-216.[王茂桢,柳少波,任拥军,等.页岩气储层黏土矿物孔隙特征及其甲烷吸附作用[J].地质评论,2015,61(1):207-216.]
[28]Ji Liming,Qiu Junli,Zhang Tongwei,et al.Experiments on methane adsorption of common clay minerals in shale[J].Earth Science:Journal of China University of Geosciences,2012,37(5):1043-1050.[吉利明,邱军利,张同伟,等.泥页岩主要黏土矿物组分甲烷吸附实验[J].地球科学:中国地质大学学报,2012,37(5):1043-1050.]
/
〈 |
|
〉 |