非常规天然气

川南地区龙马溪组页岩气储层微孔隙结构特征

展开
  • 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083;
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京100083;
    3.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;
    4.中国石油大学(北京)地球科学学院,北京102249
赵佩(1989-),女,湖北仙桃人,硕士研究生,主要从事页岩气地质、地球化学研究. E-mail:zp2682@qq.com.

收稿日期: 2013-11-06

  修回日期: 2014-03-22

  网络出版日期: 2014-06-10

基金资助

国家重点基础研究计划(“973”)课题(编号:2012CB214702);教育部高等学校博士学科点基金项目(编号:20110023110017);国家科技重大专项(编号:2011ZX05007-002)联合资助.
 

Study on Micropore Structure Characteristics of Longmaxi FormationShale Gas Reservoirs in the Southern Sichuan Basin

Expand
  • 1.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining andTechnology (Beijing),Beijing 100083,China;
    2.College of Geoscience and Surveying Engineering,China University of Mining andTechnology (Beijing),Beijing 100083,China;
    3.State Key Laboratory of Petroleum Resource and Prospecting,China University ofPetroleum(Beijing),Beijing 102249,China;
    4.College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China

Received date: 2013-11-06

  Revised date: 2014-03-22

  Online published: 2014-06-10

摘要

应用扫描电子显微镜、高压压汞法、N2和CO2气体吸附法,对川南地区下志留统龙马溪组海相页岩气储层孔隙微观特征和孔隙结构进行了研究,探讨了页岩孔隙发育的主要影响因素。结果表明,川南地区龙马溪组海相页岩样品中发育多种类型微观孔隙,常见有黏土矿物粒间孔、黄铁矿晶间孔、碳酸盐颗粒溶蚀孔、生物碎屑粒内孔、颗粒边缘溶蚀孔和有机质孔;龙马溪组富有机质页岩发育大量的微米—纳米级孔隙,为页岩气赋存提供了储集空间。龙马溪组页岩样品中孔隙以微孔和介孔为主,宏孔较少;孔隙结构形态主要为平板狭缝型孔、圆柱孔和混合型孔,孔径为0.4~1nm、3~20nm;微孔和介孔占孔隙总体积的78.17%,占比表面积的83.92%,是龙马溪组页岩储气空间的主要贡献者。页岩有机碳含量、成熟度和矿物成分含量均会影响川南地区龙马溪组海相页岩孔隙的发育,总体上页岩孔隙体积随有机碳含量增加而增大;页岩孔隙度随成熟度增加而降低;黏土矿物和脆性矿物含量对页岩孔隙发育也有一定的影响。

本文引用格式

赵佩,李贤庆,田兴旺,苏桂萍,张明扬,郭曼,董泽亮,孙萌萌,王飞宇 . 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014 , 25(6) : 947 -956 . DOI: 10.11764/j.issn.1672-1926.2014.06.947

Abstract

Based on the scanning electron microscopy,high pressure mercury-injection,N2 and CO2 gas adsorption methods,the micropore characteristics and structures of shale samples from the Lower Silurian Longmaxi Formation marine shale gas reservoirs in the southern Sichuan Basin were studied,and their influencing factors of pores development were also discussed.The results showed that there are various types of micropores in the Longmaxi Formation marine shale samples in the southern Sichuan Basin,mainly including clay inter-granular pore,pyrite crystal particle pore,bioclast inter-granular pore,carbonate grain dissolved pore,particle edge pore and organic pore.The main pore types in these shale samples are micropores and mesopores.A large amount of micro-nano scale pores are developed in the organic-rich shales,which provided storage space for shale gas.The structure of shale pores is dominated by the parallel-plate pores,cylinder pores and mixed pores.The sizes of these pores mainly occur in a range of 0.4-1nm and 3-20nm.In the Longmaxi Formation marine shale,the micropore and mesopore account for 78.17% of the total volume of pores and 83.92% of the total specific surface area.Both micropore and mesopore are the main contribution of storage space for shale gas.The organic carbon content,maturity (RO) of organic matter and mineral component content all influence pore development of the marine shale gas reservoirs.In general,the pore volume of shale increases with the increase of organic carbon content.The porosity of shale reduces as the vitrinite reflectance (RO) increases.The content of clays and brittle minerals in the organic-rich shale also has a certain influence on the development of shale pores.


参考文献

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]
[3]Ambrose R J,Hartman R C,Diaz-Campos M,et al.New pore-scale considerations for shale gas in place calculations[J].SPE 131772,2010:1-17.
[4]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[5]Roger M S,Neal R O.Pore types in the Barnett and Woodford gas shale:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[6]Zou Caineng,Tao Shizhen,Hou Lianhua,et al.Unconventional Oil and Gas Geology[M].Beijing:Geological Publishing House,2011:128-164.[邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:128-164.]
[7]Li Xianqing,Zhao Pei,Sun Jie,et al.Study on the accumulation conditions of shale gas from the Lower Paleozoic in the south region of Sichuan Basin[J].Journal of China Coal Society,2013,38(5):864-869.[李贤庆,赵佩,孙杰,等.川南地区下古生界页岩气成藏条件研究[J].煤炭学报,2013,38(5):864-869.]
[8]Milner M,McLin R,Petriello J,et al.Imaging Texture and Porosity in Mudstones and Shale:Comparison of Secondary and Ion-milled Backscatter SEM Methods[R].Canadian Unconventional Resources and International Petroleum Conference,Calfary,Alberta,Canada,19-21 October,Calgary,Alberta,Canada.SPE 138975,2010.
[9]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural Studies of Gas Shale[R].SPE Unconventional Gas Conference,23-25 February,Pittsburgh,Pennsylvania,USA.SPE 131771,2010.
[10]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[11]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mud rocks and a descriptive classification for matrix-related mud rock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[12]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.]
[13]Tian Hua,Zhang Shuichang,Liu shaobo,et al.Determinnation of organic-rich shale pore features by mercury injection methods[J].Acta Petrolei Sinica,2012,33(3):419-427.[田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.]
[14]Liu Dayong,Guo Huijuan,Peng Ping′an,et al.Characteristics and controlling factors of pore size distribution of the Lower Paleozoic shale rocks in Lower Yangtze area[J].Journal of China Coal Society,2013,38(5):778-782.[刘大永,郭慧娟,彭平安,等.下扬子地区下古生界页岩纳米孔隙特征及其控制因素[J].煤炭学报,2013,38(5):778-782.]
[15]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure metcury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[16]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al.Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-531.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-531.]
[17]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geoscience,2011,22(3):512-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):512-517.]
[18]Loucks R G,Robert M R,Stephen C P,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of sedimentary research,2009,79:848-861. 
[19]Curtis M E,Ambrose R J,Sondergeld C H,et al.Structural Characterization of Gas Shales on the Micro-and Nano-shales[R].Canadian Unconventional Resources and International Petroleum Conference,19-21 October,Calgary,Alberta,Canada.SPE 137693.2010.
[20]O′Brien N R,Thyne G,Slatt R M.Morphology of hydrocarbon droplets during migration:Visual example from the Monterey Formation Miocene,California[J].AAPG Bulletin,1996,80(11):1710-1718.
[21]Zhang Jinchuan,Lin Lamei,Li Yuxi,et al.The classification and evaluation of shale oil[J].Earth Science Frontiers,2012,19(50):322-331.[张金川,林腊梅,李玉喜,等.页岩油分类与评价[J].地学前缘,2012,19(5):322-331.]
[22]Rouquerol J,Avnir D,Fairbridge C W,et al.Physical chemistry division commission on colloid and surface chemistry,sub-committee on characterization of porous solids:Recommendations for the characterization of porous solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758.
[23]Xin Qin,Luo Mengfei.Modern Catalytic Research Methods[M].Beijing:Science Press,2009:10-43.[辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009:10-43.]
[24]Wang Shiqian,Chen Gengsheng,Dong Dazhong,et al.Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan Basin[J].Natural Gas Industry,2009,29(5):51-58.[王世谦,陈更生,董大忠,等.四川盆地下古生界页岩气藏形成条件与勘探前景[J].天然气业,2009,29(5):51-58.]
[25]Wang Qingbo,Liu Ruobing,Li Chunyan,et al.Geologic condition of the Upper Ordovician-Lower silurian shale gas in the Sichuan Basin and its periphery[J].Journal of Chongqing University of Science and Technology:Natural Sciences Edition,2012,14(5):17-21.[王庆波,刘若冰,李春燕,等.四川盆地及周缘五峰—龙马溪组页岩气地质条件研究[J].重庆科技学院学报:自然科学版,2012,14(5):17-21.]
[26]Chen Shangbin,Xia Xiaohong,Qin Yong,et al.Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J].Journal of China Coal Society,2013,38(5):760-765.[陈尚斌,夏筱红,秦勇,等.川南富集区龙马溪组页岩气储层孔隙结构分类[J].煤炭学报,2013,38(5):760-765.]
[27]Liu Zufa,Tan Shenglin,Xu Liangwei,et al.Pore characteristics and their controlled factors of some Lower Paleozoic shales from the Yangtze area[J].Journal of China Coal Society,2013,38(5):783-786.[刘祖发,谭圣林,徐良伟,等.扬子地区某些下古生界页岩孔隙特征及影响因素[J].煤炭学报,2013,38(5):783-786.]
[28]Cheng Peng,Xiao Xianming.Gas content of organic-rich shales with very high maturities[J].Journal of China Coal Society,2013,38(5):737-741.[程鹏,肖贤明.很高成熟度富有机质页岩的含气性问题[J].煤炭学报,2013,38(5):735-741.]
[29]Wu Jingsu,Yu Bingsong,Zhang Jinchuan,et al.Pore characteristics and controlling factors in the organic shale of the Lower Silurian Longmaxi Formation revealed by samples from a well in southeastern Chongqing[J].Earth Science Fronties,2013,20(3):260-269.[武景淑,于炳松,张金川,等.渝东南渝页1井下志留统龙马溪组页岩孔隙特征及其主控因素[J].地学前缘,2013,20(3):260-269.]
[30]Mahlstedt N,Horsfield B.Metagenetic methane generation in gas shales I.Screening protocols using immature samples[J].Marine and Petroleum Geology,2012,31:27-42.
[31]Chalmers G R,Bustin P M,Power L M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[32]Zagorski W A,Bowman D C,Emery M,et al.An overview of some key factors controlling well productivity in Coew areas of the Appalachian Basin Marcellus shale play[C]//AAPG Annual Convertion and Exhibation 2011.Houston:American Association of Petroleum Geologists,2011.
[33]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Shale gas reservoir characterization:A typical case in the southern Sichuan Basin of China[J].Energy,2011,36:6609-6616.
[34]Meshri L D.On the reactivity of carbonic and organic acids and generation of secondary porosity[J].SEPM Special Pbulication,1986,38(6):123-128.
[35]Surdam R C,Crossey L J.Intergrated diagenetic modeling:Aprocess oriented approach for clastic systems[J].Annual Review of Earth and Planetary Science,1987,15(5):141-170.  [36]Huang Zhenkai,Chen Jianping,Wang Yijun,et al.Characteristics of micropores in mudstones of the Cretaceous Qingshankou Formation,Songliao Basin[J].Acta petrolei Sinica,2013,34(1):30-36.[黄振凯,陈建平,王义军,等.松辽盆地白垩系青山口组泥岩微观孔隙特征[J].石油学报,2013,34(1):30-36.]

文章导航

/