收稿日期: 2013-05-14
修回日期: 2013-10-07
网络出版日期: 2014-05-10
基金资助
国家重点基础研究发展规划项目“页岩气气藏工程方法基础研究”(编号:2013CB228005)资助.
Study on Numerical Well Test Method of Gas Reservoirs with Large-scale Fractures
Received date: 2013-05-14
Revised date: 2013-10-07
Online published: 2014-05-10
裂缝性气藏因储层中存在不同尺度的天然裂缝,总体表现为较强的非均质性。传统描述裂缝性气藏的双重介质及其扩展模型对于气藏等效过于理想,不能很好地解释裂缝特征参数对其试井曲线的影响。为此,根据蒙特卡罗法随机裂缝产生方法和非结构Voronoi网格数值生成方法产生气藏含有大尺度裂缝的离散裂缝网格模型,进一步采用控制体有限差分法建立对应的数学模型并利用全隐式法求解。最后在实例证明离散裂缝网络模型试井曲线正确性基础上,讨论并分析了大尺度裂缝特征参数(数量、角度、长度)对试井曲线的影响。研究结果表明:裂缝特征参数主要影响压力导数后期的曲线;裂缝数量越多,后期压力导数曲线下降幅度越大;裂缝长度越长,则压力导数曲线下降出现的时间越早,且下降幅度越大;裂缝角度对试井曲线特征总体影响不大,但当裂缝角度与井径向网格方向基本一致时,压力导数曲线下降出现时间最早,且下降幅度最大。
魏明强,段永刚,李彦波,方全堂,姚陆峰 . 存在大尺度天然裂缝的气藏数值试井分析方法[J]. 天然气地球科学, 2014 , 25(5) : 778 -782 . DOI: 10.11764/j.issn.1672-1926.2014.05.778
fractured gas reservoir has very strong heterogeneity when natural fractures with different scale exist.The traditional Dual Porosity Model and its extended models can′t explain precisely about the effect of the fracture factors on the well-test curve,because these models are too idealistic for the gas reservoir.Thus,the paper presents a discrete fracture network model for gas reservoirs which contain large-scale fractures based on Monte Carlo random fractures method and Voronoi Non-Structural grid method,then founds math model of reservoir by Controlling Volume Finite difference method,and uses the fully implicit method for solving problems.Finally,after proving the well test curve of discrete fracture network model by the real well test curve of fractured reservoir,the well-test curve effected by large-scale fracture parameters (including numbers,angles,length) are discussed.The research results suggest that:the late pressure derivative curve is affected by the fracture characteristic parameters;the more number of fractures is,the greater decline of late pressure derivative curve;the longer of the length of fracture is,the earlier of late pressure derivative curve will appear,also the greater decline of late pressure derivative curve;the angle of fracture has little effect on the late pressure derivative curve,but when the fractures′ angle is basically the same with the well radial grid direction,the pressure derivative curve decreased the earliest and had the biggest drop.
[1]Wu Xinyuan,Lian Zhanghua,Meng Yingfeng,et al.Seepage field analysis of fractured gas reservoir with different completion methods[J].Natural Gas Geoscience,2011,22(6):1123-1127.[吴欣袁,练章华,孟英峰,等.裂缝性气藏不同完井方式渗流场分析[J].天然气地球科学,2011,22(6):1123-1127.]
[2]Fan Huaicai,Zhong Bing,Li Xiaoping,et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Natural Gas Geoscience,2012,23(6):1179-1184.[樊怀才,钟兵,李晓平,等.裂缝型产水气藏水侵机理研究[J].天然气地球科学,2012,23(6):1179-1184.]
[3]Barenblatt G I,Zheltov Iu P,Kochina I N.Basic concept in the theory of homogeneous liquids in fissured rocks[J].Journal of Applied Mathematics and Mechanics,1960,24:1286-1303.
[4]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].SPE Journal,1963,(3):245-255
[5]Ghorayeb K,Firoozabadi A.Numerical study of natural convection and diffusion in fractured porous media[J].SPE Journal,2000,(5):12-20.
[6]Karimi F M,RERI A F.Numerical Simulation of Water Injection in 2D Fractured Media Using Discrete-Fracture Model\[R\].SPE Annual Technical Conference and Exhibition,30 September-3 October,New Orleans,Louisiana.SPE 71615,2001.
[7]Zhang Yun,Yuan Xiangchun,Yao Jun,et al.Discrete fracture numerical simulation methods for reservoirs[J].Journal of Daqing Petroleum Institue,2010,34(3):80-85.[张允,袁向春,姚军,等.离散裂缝性油藏数值模拟方法[J],大庆石油学院学报,2010,34(3):80-85.]
[8]Yao Jun,Wang Zisheng,Zhang Yun.Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J].Acta Petrolei Sinica,2010,31(2):284-288.[姚军,王子胜,张允.天然裂缝性油藏的离散裂缝网络数值模拟方法[J].石油学报,2010,31(2):284-288.]
[9]Lv Xinrui.Study on Flow Simulation of Discrete Fracture Network Model Based on Control Volume Method[D].Dongying:China University of Petroleum(EastChina),2010.[吕心瑞.基于控制体积方法的离散裂缝网络模型流动模拟研究[D].东营:中国石油大学(华东),2010.]
[10]Shan Xian,Yao Jun.Pressure field analysis on vertically fractured well with discrete-fracture model[J].Petroleum Geology and Recovery Efficiency,2011,18(3):67-73.[单娴,姚军.基于离散裂缝模型的裂缝井渗流压力场分析[J].油气地质与采收率,2011,18(3):67-73.]
[11]Huang Zhaoqin,Yao Jun,Wang Yueying,et al.Numerical simulation on water flooding development of fractured reservoirs in a discrete-fracture model[J].Chinese Journal of Computational Physics,2011,28(1):41-49.[黄朝琴,姚军,王月英,等.基于离散裂缝模型的裂缝性油藏注水开发数值模拟[J].计算物理,2011,28(1):41-49.]
[12]Song Xiaochen,Xu Weiya.Nnumerical model of three-dimensional discrete fracture network for seepage in fractured rocks(I):Generation of fracture network[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(12):2015-2020.[宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.]
[13]Schneider P J,Eberly D H,Zhou Changfa.Geometru Tools of Computer Graphic Algorithms Detailed[M].Beijing:Publishing House of Electronics Industry,2005:512-582.[Schneider P J,Eberly D H,周长发.计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005:512-582.]
[14]Li Xiaoping,Zhang Liehui,Liu Qiguo.Well Test Analysis Methods[M].Beijing:Petroleum Industry Press,2009:188-196.[李晓平,张烈辉,刘启国.试井分析方法[M].北京:石油工业出版社,2009:188-196.]
/
〈 |
|
〉 |