收稿日期: 2011-06-24
修回日期: 2011-08-09
网络出版日期: 2012-02-10
基金资助
国家重大专项“043”项目(编号:2008ZX05043)资助.
Kerogen Solution Theory and Its Exploratory Application in Shale Gas Assessment
Received date: 2011-06-24
Revised date: 2011-08-09
Online published: 2012-02-10
通过引入干酪根溶解理论及在其基础上发展而来的生烃、排烃模型,指出Ⅱ型干酪根在较高演化程度(转换率>75%)下,液态烃(C6-15+)的排烃效率高于69%,气态烃(C1-5)的排烃效率高达97%。计算得到Ⅱ型干酪根在高演化阶段的滞留气量(非页岩总滞留量)为2.84mg/gTOC.由干酪根溶解理论模型所得干酪根滞留气量间接反映页岩中吸附气所占比例不大,而由有机质降解,成岩作用(如蒙脱石向伊利石转换)或者构造运动而形成的孔隙和裂缝中的游离气含量较高,是页岩气产量的主力贡献。在页岩气区带优选及井位选择时需要特别重视寻找微米—纳米孔及天然微裂缝发育的“甜点区”。
陈晓明,李建忠,,郑民,,郑曼 . 干酪根溶解理论及其在页岩气评价中的应用探索[J]. 天然气地球科学, 2012 , 23(1) : 14 -18 . DOI: 10.11764/j.issn.1672-1926.2012.01.14
This article introduces the kerogen solution theory as well as a hydrocarbon expulsion model on its basis and brings forward the conclusions as follows.As to the kerogen(TypeⅡ)of high matured(TRHI>75%),the expulsion efficiency of oil (C6-15+) exceeds 69% and the expulsion efficiency of gas(C1-5)can reach as high as 97%.The result calculated shows that the gas retained in high matured kerogen (TypeⅡ) is about 2.84mg/gTOC(not total gas content of shale).The writers explore to apply the kerogen solution theoretical model to indirectly characterize the content of adsorbed gas and come to the conclusion that gas adsorbed in shale accounts for a small proportion.While the content of free gas within pore or fracture created through diagenesis (like montmorillonite transforming to illite),kerogen degrading or structural activity is high,making a significant contribution to the production of shale gas.Therefore,much more importance should be attached to finding the "sweet spots" where micro\|nanopores and nature micro\|fractures develop in the activity of shale gas exploration and development.
Key words: Kerogen solution theory; Hydrocarbon expulsion; Shale gas; Adsorbed gas; Free gas.
[1]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng,et al.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):51-58.[张金川,金之钧,袁明生,等.页岩气成藏机理和分布[J].天然气工业,2004,24(7):51-58.]
[2]Daniel M J,Ronald J H,Tim E R,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[3]Wang Zhaoyun,Zhao Wenzhi,Zhang Shuichang,et al.Origin of deep marine gas and oil cracking gas potential of Paleozoic source rocks in Tarim basin[J].Acta Sedmentologgica Snica,2009,27(1):153-161.[王兆云,赵文智,张水昌,等.深层海相天然气成因与塔里木盆地古生界油裂解气资源[J].沉积学报,2009,27(1):153-161.]
[4]Wang Shejiao,Wang Lansheng,Huang Jinliang,et al.Accumulation conditions of shale gas reservoirs in Silurian of the upper Yangtze region[J].Natural Gas Industry,2009,29(5):45-50.[王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件[J].天然气工业,2009,29(5):45-50.]
[5]Jiang Wenli,Zhao Suping,Zhang Jinchuan,et al.Comparison of controlled factors for coalbed methane and shale gas Accumulation[J].Natural Gas Geoscience,2010,21(6):1057-1060.[姜文利,赵素平,张金川,等.煤层气与页岩气聚集主控因素对比[J].天然气地球科学,2010,21(6):1057-1060.]
[6]Wang Feiyu,He Zhiyong,Meng Xiaohui,et al.Occurrence of shale gas and prediction of original gas in-place(OGIP)[J].Natural Gas Geoscience,2011,22(3):501-510.[ 王飞宇,贺志勇,孟晓辉,等.页岩气赋存形式和初始原地气量(OGIP)预测技术[J].天然气地球科学,2011,22(3):501-510.]
[7]Fang Junhua,Zhu Yanming,Wei Wei,et al.Preliminary study of abnormalities of shale isotherm adsorption experiment[J].Tuha Oil & Gas,2010,15(4):317-320.[方俊华,朱炎铭,魏伟,等.页岩等温吸附异常初探[J].吐哈油气,2010,15(4):317-320.]
[8]Hildebrand J H.Solubility of Non-electrolytes[M].New York:Reinhold Publish Corporation,1936.
[9]Ulrich R.Solubility of petroleum compounds in kerogen implications for petroleum expulsion[J].Organic Geochemistry,2003,34:319-326.
[10]Clifford C W,Howard J F,Simon R K,et al.Method for Predicting Petroleum Expulsion:US,20100161302[P].2010-06-24.
[11]Ulrich R.Fractionation of petroleum during expulsion from kerogen[J].Journal of Geochemical Exploration,2003,78/79:417-420.
[12]Zhao Wenzhi,Wang Zecheng,Wang Hongjun,et al.Geological characteristic of largemid scale gas fields discoveried recently in China and natural gas prosecting in the early 21st Century[J].Natural Gas Geoscience,2005,16(6):687-692.[赵文智,汪泽成,王红军,等.近年来我国发现大中型气田的地质特点与21世纪初天然气勘探前景[J].天然气地球科学,2005,16(6):687-692.]
[13]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Successive generation of natural gas from organic materials and its significance in future exploration[J].Petroleum Exploration and Development,2005,32(2):1-7.[赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.]
[14]Zhao Wenzhi,Wang Zhaoyun,Wang Hongjun,et al.Further discussion on the connotation and significance of the natural gas relaying generation model from organic materials[J].Petroleum Exploration and Development,2011,38(2):129-135.[赵文智,王兆云,王红军,等.再论有机质“接力成气”的内涵与意义[J].石油勘探与开发,2011,38(2):129-135.]
/
〈 |
|
〉 |