收稿日期: 2008-04-25
修回日期: 2008-08-05
网络出版日期: 2008-04-20
基金资助
.
Quantitative Calculation of Reservoir Properties and Gas Saturation in Oolitic Dolostone, Puguang Gasfield
Received date: 2008-04-25
Revised date: 2008-08-05
Online published: 2008-04-20
普光大型气田的发现为我国深层海相碳酸盐岩的勘探提供了重要参考.普光气田发现了目前国内最好的深部白云岩储层,储层不仅厚度大,分布范围广,而且次生孔隙也异常发育.研究认为,普光气藏的油气充注时间早、埋藏深、有机质热演化程度高,烃(油气)-岩(碳酸盐岩储层)-水相互作用的时间长.该地区次生孔隙的发育受多期次成岩作用的影响,成因机理复杂.通过对普光气田长兴组-飞仙关组沉积环境、沉积相带和储层孔隙特征的研究,认为普光优质白云岩储层的形成是发育在有利沉积相带的基础上,受表生溶蚀、埋藏溶蚀、超压作用和构造运动等多种因素共同作用的结果,其中TSR对储层的埋藏溶蚀作用和有机质热演化形成的超压作用对长兴组-飞仙关组次生孔隙发育的具有重要的影响. 更多还原
马永生 . 普光气田鲕滩云岩储层物性及天然气储量计算的量化[J]. 天然气地球科学, 2008 , 19(4) : 437 -443 . DOI: 10.11764/j.issn.1672-1926.2008.04.437
[1]Focke J W, Munn D. Cementation exponents in Middle Eastern carbonate reservoirs[R]. SPE 13735, 1987:155-167.
[2]Byrnes A P, Franseen E K, Watney W L, et al. The role of moldic porosity in paleozoic Kansas reservoirs and the association of original depositional facies and early diagenesis with reservoir properties[EB/OL]. http://www.kgs.ku.edu/PRS/publication/2003/ofr2003-32/index.html,2003.
[3] 李仲东,周文.川东三叠系飞四段滩相鲕粒灰岩储层[J]. 成都理工大学学报:自然科学版, 2005,32(2):126-128.
[4]马永生,郭旭升,郭彤楼,等. 四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,25(4):476-480.
[5]马永生,牟传龙,郭彤楼,等.四川盆地东北部飞仙关组层序地层与储层分布[J].矿物岩石,2005,25(4):73-79.
[6]马永生,牟传龙,谭钦银,等. 达县-宣汉地区长兴组-飞仙关组礁滩相特征及其对储层的制约[J]. 地学前缘,2007,14(1):182-192.
[7] 马永生,蔡勋育. 四川盆地川东北区二叠系-三叠系天然气勘探成果与前景展望[J].石油与天然气地质,2006,27(6):741-750.
[8]马永生.普光气田天然气地球化学特征及气源探讨[J].天然气地球科学,2008,19(1):1-7.
[9]Amthor J A,Friedman G M. Early-to-late-diagenetic dolomitization of platform carbonates: Lower Ordovician Ellenburger Group, Permian Basin, West Texas[J].Journal of Sedimentay Petrology, 1992, 62 (1):131-144.
[10]Borkhataria R, Aigner T, Pppelreiter, et al. Characterisation of epeiric "layer-cake" carbonate reservoirs : Upper Muschelkalk (Middle Triassic), the Netherlands[J]. Journal of Petroleum Geology, 2005, 28(2):119-146.
[11]Schauer M, Aigner T, Tübingen. Cycle stacking pattern, diagenesis and reservoir geology of peritidal dolostones, trigonodus-dolomite, Upper Muschelkalk (Middle Triassic, SW-Germany)[J].Facies,1997,37(1): 99-114.
[12]Eichenseer H T, Walgenwitz F R, Biondi P J. Stratigraphic control on facies and diagenesis of dolomitized oolitic siliciclastic ramp sequences (Pinda Group, Albian, Offshore Angola)[J]. AAPG Bulletin, 1999, 83 (11):1729-1758.
[13]James W,Jennings J,Lucia F J. Predicting Permeability from Well Logs in Carbonates with a Link to Geology for Interwell Permeability Mapping[R].SPE 71336, 2001:1-16.
[14] Kostic B, Aigner T. Sedimentary and poroperm anatomy of shoal-water carbonates (Muschelkalk, South-German Basin): an outcrop-analogue study of inter-well spacing scale[J]. Facies,2004,50(1):113-131.
[15]储昭宏,马永生,林畅松. 碳酸盐岩岩储层渗透率预测[J]. 地质科技情报,2006,25(4):28-32.
[16]Lucia F J, Conti R D. Rock Fabric, Permeability, and Log Relationships in an Upward-Shoaling, Vuggy Carbonate Sequence[R]. Geological Circular 87-5, 1987.
[17]Wang F P, Lucia F J. Comparison of Empirical Models for Calculating the Vuggy Porosity and Cementation Exponent of Carbonates from Log Responses[R]. Geological Circular 93-4, 1993.
[18]Mendelson K S,Cohen M H. The effect of grain anisotropy on the electrical properties of sedimentary rocks[J]. Geophysics, 1982, 47(2):257-263.
[19]Archie G E. Electrical resistivity as an aid in core analysis interpretation[J]. AAPG Bulletion, 1947, 31(3):50-66.
[20]Archie G E. Classification of carbonate reservoir rocks and petrophysical considerations[J]. AAPG Bulletin, 1952, 36(2):78-98.
/
〈 |
|
〉 |