收稿日期: 2008-12-17
修回日期: 2009-03-26
网络出版日期: 2009-06-10
基金资助
中国石油天然气股份有限公司科技风险创新基金项目(编号:W060134A)资助.
Research of 4D Reservoir Modeling Method
Received date: 2008-12-17
Revised date: 2009-03-26
Online published: 2009-06-10
传统的建模方法包括确定性建模和随机建模,但它们不能实现储层参数在时间维的预测。建立储层参数的四维模型能够揭示储层参数在四维空间的分布和演化规律,对剩余油的进一步挖潜具有重要的理论和现实意义。在充分吸取已有2种储层四维建模方法优点的基础上,提出了一种建立储层四维模型的新方法:首先结合实验分析、生产动态等资料,来求取历史储层参数;接着利用人工神经网络方法,对历史储层参数进行学习与训练,总结出各井点储层参数随时间的演变规律,进而对未来的井点储层参数做出预测;然后建立起构造模型,应用随机模拟或克里金插值方法来预测井间的储层参数;最后应用三维数据场可视化技术,对各个开发时期的储层参数进行显示。通过该方法建立起江苏油田庄2断块E1f1-1小层含油饱和度的四维模型,结合生产动态数据分析,发现所建的四维模型较准确的反映了E1f11-1小层含油饱和度在三维空间的分布和演化规律。
杨少春, 潘少伟, 杨柏, 黄建廷, 段天向 . 储层四维建模方法研究[J]. 天然气地球科学, 2009 , 20(3) : 420 -424 . DOI: 10.11764/j.issn.1672-1926.2009.03.420
The traditional methods of determinable modeling and stochastic modeling can't forecast the changes of reservoir parameters in the domain of time. The establishing of 4D model of the reservoir parameters can reveal the distribution and evolution of the law of reservoir parameters in the 4D space, which are good for the further exploitation of the remained oil. There are two methods of establishing a 4D reservoir model, one is establishing the 3D model of the reservoir parameters during the development period, and the other is establishing the 4D model of the reservoir parameters with the artificial neural network approach. A new method of establishing the 4D model of reservoir is developed on the basis of the advantages of the above two methods. First, the previous reservoir parameters are calculated by the experimental and producing information. Second, the previous reservoir parameters are learned and trained by the artificial neural network, and the law of evolution of reservoir parameters of wells is calculated, so the reservoir parameters of the wells are forecasted. Third, the inter\|well reservoir parameters are forecasted by the methods of stochastic simulation and Kriging interpolation. Last, the reservoir parameters of different development periods are displayed with the method of the 3D visualization. Then the 4D reservoir model is established successfully.
[1]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4):46-51.[2]孙焕泉,孙国,程会明,等.胜坨油田特高含水期剩余油分布仿真模型[J].石油勘探与开发,2002,29(3):66-68.
[3]李红南,王德军.油藏动态模型和剩余油仿真模型[J].石油学报,2006,27(5):83-87.
[4]徐守余,朱连章,王德军.微观剩余油动态演化仿真模型研究[J].石油学报,2005,26(2):69-72.
[5]李健.三角洲低渗透储层流动单元四维模型及剩余油预测[M].北京:石油工业出版社,2004:80-86.
[6]彭仕宓,尹志军,李海燕.建立储层四维地质模型的新尝试[J].地质论评,2004,50(6):662-666.
[7]Jia Ailin.The Technology and Methdology of Reservoir Geological Modeling in the Evaluation Phase of Oilfield Development[C].SPE 50879,1998: 67-75.
[8]徐守余,王艳红.利用神经网络建立储层宏观参数动态模型[J]. 油气地质与采收率,2005,12(6):10-12.
[9]张继春,彭仕宓,穆立华,等.流动单元四维动态演化仿真模型研究[J].石油学报,2005,26(1):69-73.
[10]胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报:自然科学版,2001,25(1):107-112.
[11]田冷,何顺利,顾岱鸿.苏里格气田储层三维地质建模技术研究[J].天然气地球科学,2004,15(6):593-596.
[12]吴胜和,金振奎,黄沧钿,等.储层建模[M].北京:石油工业出版社,1999.
[13]王家华,张团峰.油气储层建模[M].北京:石油工业出版社,2001:12-23.
[14]汤军.对储层建模的研究[J].石油天然气学报,2006,28(3):50-52.
[15]周延军,吕新华,林明华,等.储层四维随机建模[J].江汉石油学院学报,2004,26(增):1.
[16] 张枫,李治平,凌宗发.黄骅坳陷唐家河油田四维地质建模研究[J].天然气地球科学,2007,18(6):898-902.
[17]孙国.利用人工神经网络系统建立储层四维地质模型[J].油气地质与采收率,2004,11(3):4-6.
[18]徐守余.油藏描述方法原理[M].北京:石油工业出版社,2005:62-65.
[19]黄雪燕.基于人工神经网络的广西GDP预测研究[J].钦州学院学报,2007,22(3):44-48.
[20] 庞涛涛,姚建斌,杜黎明.人工神经网络分类鉴别苦丁茶红外光谱[J].光谱学与光谱分析,2007,27(7):1336-1339.
[21] 李凤杰,王多云,苑克增,等.人工神经网络技术在油田储层物性预测中的应用--以西峰油田为例[J].天然气地球科学,2004,15(3):243-247.
/
〈 |
|
〉 |