收稿日期: 2003-01-16
修回日期: 2003-01-27
网络出版日期: 2003-02-20
基金资助
国家“973”项目(2001CB209100)与中国科学院重要方向项目(KZCX2-111)资助.
THE GAINING AND APPLYING OF DATA IN NATURAL GAS GEOCHEMISTRY STUDY
Received date: 2003-01-16
Revised date: 2003-01-27
Online published: 2003-02-20
天然气地球化学研究已成为天然气藏勘探开发的重要基础工作。由于气源的混合性和天然气化学组成和同位素组成影响因素的多样性使得天然气藏的形成过程极为复杂 ,同时也给天然气地球化学研究带来了极大的困难和严格的要求 ,故而 ,获取精确的地球化学分析数据无论对科学研究还是对气藏的勘探开发来说都非常重要。不同成因的天然气类型和同一源岩不同演化阶段生成的天然气具有不同的化学组份和不同的稳定同位素特征。根据气体化学组份和稳定同位素特征可初步确定天然气的成因类型。在天然气类型确定后 ,利用天然气碳同位素与 Ro 之间的关系式可以确定天然气的成熟度。而系列碳同位素之间会存在差异 ,存在差异的原因可能是多种多样的。稀有气体可作为判识天然气来源的一个辅助指标 ,用此指标可鉴别天然气中是否有深部气体的混入。当确定天然气中无深部气体混入时 ,可利用4 0 Ar/ 36 Ar比值对烃源岩的年代做出初步的估算。应用地球化学参数在解释天然气形成特征时 ,必须结合实际地质背景进行。
刘文汇, 刘全有, 徐永昌, 张殿伟 . 天然气地球化学数据的获取及应用[J]. 天然气地球科学, 2003 , 14(1) : 21 -29 . DOI: 10.11764/j.issn.1672-1926.2003.01.21
Natural gas geochemistry study has become an important basic work in the exploitation of natural gas. Because of the mixing of gas sources and the multiformity in the natural gases chemical composition and isotopic composition, the forming process of gas pool is very complex. It is important that take accurate geochemistry analysis data in natural gas geochemistry study. Natural gases formed by different types and different evolvement stage of source rocks have different chemical composition and isotopic characteristics. According to these, we can confirm the forming type of natural gases. After these, using the relation between natural gas carbon isotope and Ro, we can make sure the maturity ofnatural gas. There are many reasons making the variety of the carbon isotope series. Being an assistant index to judge the natural gas resource, noble gas can distinguish whether natural gas mixed by deep gas or not. When it is made sure that the natural gas has been mixed by deep gas, the 40Ar/36Ar value is used to estimate the age of source rock. When applying these geochemistry indexes to explain the forming characteristics of natural gases, we must combine the geological background.
[1] Rice D D, Claypool G E. Generation, accumulation, and resource potential of biogenic gas[J]. AAPG Bulletin,1981,65:5-25.
[2] 徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994.
[3] Tissot B, Welte D. Petroleum Formation and Occurrence(2nd)[M]. Berlin:Springer,1984.
[4] Schoell M. Genetic characterization of natural gas[J].AAPG Bulletin,1983, 67:2225-2238.
[5] Krouse H R, Viau C A, Eliuk A L, et al. Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988,333:415-419.
[6][KG*7/8]Hunt J M. Petroleum Geochemistry and Geology(2nd)[M]. New York:W H Freeman,1996.
[7] Jackson K J, Burnham A K, Braun R L, et al. Temperature and pressure dependence of n-hexadecane cracking[J]. Organic Geochemisty,1995,23:941-953.
[8] Schenk H J, Di Primio R, Horsfield B. The conversion of oil into gas in petroleum reserivors, Part Ⅰ: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry,1997,26:467-481.
[9] Domine F, Dessort D, Brevart O.Towards a new method of geochemical kinetic modeling: Implications for the stability of crude oils[J]. Organic Geochemistry, 1998,28: 597-612.
[10] Sajgo C. Assessment of generation temperature of crude oils[J]. Organic Geochemistry, 2000, 31:130-132.
[11][KG*3/4]McNab J G, Smith P V, Betts R L.The evolution of petroleum[J]. Petroleum Engineering Chemistry,1952,44:2556-2563.
[12] Saxby J D, Riley K W. Petroleum generation by laboratory- scale pyrolysis over six years simulating conditions in a subsiding basin[J]. Nature, 1984, 308:175-177.
[13] Espitalie J, Ungerer P, Irwin I, et al. Primary cracking of kerogens, experimenting and modeling C1,C2-5, C6-15and C15+ classes of hydrocarbons formed[J].Organic Geochemistry, 1987, 13: 893-899.
[14]Horsfield B, Schenk H J, Mills N. An investigation of the in-reserovir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J]. Organic Geochemistry,1992,19:191-204.
[15] Mango F D, Hightower J W, James A T.Role of transition-metal catalysis in the formation of natural gas[J]. Natural,1994,368:536-538.
[16] Appleby W G, Avery W H, Meerbott W K. Kinetics and mechanism of the thermal decomposition of n-heptane[J].Journal of the Americian Chemical Society,1947, 69:2279-2285.
[17]Fabuss B M, Smith J O, Lait R I, et al. Rapid thermal cracking of n-hexadecane at elevated pressures[J].Industrial and Engineering Chemistry(Process Development Division), 1962,1:293-299.
[18]Van Aarssen D G K, Bastow T P, Alexander R, et al. Distribution of mathylated naphthalenes in crude oils: Indicators of maturity, biodegradatin and mixing[J]. Organic Geochemistry,1999,30:1213-1227.
[19] Laidler K J, Wojciechowski B W. Kinetics and mechanisms of the thermal dcomposition of ethane, I, The uninhibited reaction[A]. In: Proceedings of the Royal Society A260[C]. 1961.91-102.
[20] Laidler K J, Sagert N H, Wojciechowski B W.Kinetics and mechanisms of the thermal decomposition of propane[A].In:Proceedings of the Royal Society A270[C]. 1962. 242-253.
[21][KG*3/4]Ford T J. Liquid-phase thermal decomposition of hexadecane: Reaction mechanisms[J]. Industrial and Engineering Chemistry(Process Development Division), 1986,25:240-243.
[22] Morrison R T, Boyd R N. Organic Chemistry(3rd edition)[M]. Boston: Allyn & Bacon, Inc,1973.110.
[23] Inan S. Gaseous hydrocarbons generated during pyrolysis of petroleum source rocks using unconventional grainsize:Implications for natural gas composition[J]. Organic Geochemistry, 2000, 31:1409-1418.
[24] 张士亚,郜建军,蒋泰然.利用甲、乙烷碳同位素判别天然气类型的一种新方法[A].见:《中国煤成气研究》地矿部石油地质所编.石油天然气地质文集(第一集)[C].北京:地质出版社,1988.
[25] 徐永昌, 沈平,刘全有.“西气东输”探明天然气的地球化学特征及资源潜势[J].沉积学报,2002,20(3):447-455.
[26] Stahl w J, Carey Jr B B. Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware Basins, West Texas[J].Chemical Geology,1975,16:257-267.
[27] 徐永昌,沈平.中原-华北油气区“煤型气”地球化学特征初探[J].沉积学报,1985,3(2):37-46.
[28] 戴金星,戚厚发.鉴别煤成气和油型气等指标的初步探讨[J].石油学报,1985,6(2):31-38.
[29] 沈平,徐永昌,王先彬,等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991.1-248.
[30] 沈平,申歧祥,王先彬,等.气态烃同位素组成特征及煤型气判识[J].中国科学(B辑),1987,(6):647-656.
[31] 戴金星.近十年来我国天然气勘探取得重要进展[J].天然气地球科学,1990,1(1):1-3.
[32]Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rock[J]. Chemical Geology,1988,71:77-96.
[33] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origin[J]. Geochimica et Cosmochimica Acta, 1980, 44: 649-662.
[34] 刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学, 1999,28(4): 359-366.
[35] Du Jianguo, Jin Zhijun, Xie Hongsen, et al. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lighnite[J]. Organic Geochemistry, 2003, 34:97-104.
[36] Galimov E M, Rabbani A R. Geochemical characteristic and origin of natural gas in southern Iran[J]. Geochemistry International,2001,39(8):780-792.
[37] Chung H M, Gormly J R, Squires R M. Origin of gaseous hydrocarbons in subsurface environment:theoretical considerations of carbon isotope distribution[J]. Chemical Geology, 1988,71, 97-104.
[38]Prinzhofer A A, Mello M R, Takaki T.Geochemical characterization of natural gas, a physical multivariable and its application in maturity and migration estimate[J]. AAPG Bulletin, 2000, 84:1152-1172.
[39] Mattavelli L, Ricchiuto T, Grignani D, et al.Geochemistry and habitat of natural gases in Po Basin, Northern Italy[J].AAPG Bulletin, 1984, 67(12):2239-2254.
[40]Coleman D D, Risatti J B, Schoell M. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta, 1981,45:1033-1037.
[41] 徐永昌,沈平,刘文汇,等.天然气中稀有气体地球化学[M].北京:科学出版社,1998.
[42]Mamyrin B A, Anufriyev G S, Kamenskiy I L, et al.Determinationof the isotopic composition of atmospheric helium[J].Geochemistry International,1970,7:478-505.
[43] 徐永昌,王先彬,吴仁铭,等.天然气中稀有气体同位素[J].地球化学,1979,(4):271-282.
[44] 刘文汇,徐永昌.天然气中氩与源岩、储层钾、氩之关系[A].见:中国科学院兰州地质研究所.生物气体地球化学开放实验室研究年报[C].兰州:甘肃科学技术出版社,1986.191-200.
/
〈 |
|
〉 |