气田开发

人工智能技术在试井解释中的应用及进展

展开
  • 中国地质大学;

网络出版日期: 2005-06-20

THE ADVANCE OF APPLYING ARTIFICIAL INTELLIGENCE IN WELL TEST ANALYSIS

Expand
  • China University of Geosciences, Beijing 100083,China

Online published: 2005-06-20

摘要

自从计算机技术被引入到试井解释工作中,试井解释一直是自动化处理和手工处理相结合的一项工作。人工智能技术能够提高试井解释工作的效率和准确度。目前在试井解释中广泛使用的人工智能技术属人工神经网络和遗传算法技术。讨论了这些技术在试井解释中的应用及进展。

本文引用格式

雷霆;李治平; . 人工智能技术在试井解释中的应用及进展[J]. 天然气地球科学, 2005 , 16(3) : 374 -377 . DOI: 10.11764/j.issn.1672-1926.2005.03.374

Abstract

Since computers had been used in well test analysis, the process of analysis is a combination of automated and artificial. Using astificial intelligence technologies can improve the efficiency and accuracy of such process. Among all kinds of artificial intelligence technologies, artificial neural network(ANN) and genetic algorithm(GA) has been widely used in well test analysis. This paper reviewed the advances of these technologies.

参考文献

     [1]Hammerstrom D.Working with neural networks-[J]. IEEE Spectrum, 1993, 46-53.
 [2]Al-Kaabi A U,Lee W J.Using artificial neural networks to identify the well test interpretation model[J]. SPE Formation Evaluation Journal, SPE, 1993, 233-240.
 [3] 邓远忠,陈钦雷.试井解释图版拟合分析的神经网络方法[J].石油勘探与开发,2000,27(1):64-66.
 [4] Sultan, Al-Kaabi.Application of neural network to the Determination of Well-Test Interpretation Model for Horizontal Wells[R]. SPE 77878, 2002.
 [5] Holland J H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press, 1975.
     [6] 阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
 [7] 陈伟,段永刚,等.基于遗传算法的混合自动拟合方法[J].油气井测,1998,(1):15-18.
 [8] Baris, Horne. Automated Reservoir Model Selection in Well Test Interpretation[R]. SPE 71569, 2001.
 [9] 姚军,戴卫华,王子胜.变井筒储存的三重介质油藏试井解释方法研究[J].石油大学学报(自然科学版),2004,28(1):46-54.
[10] 陈伟,段永刚.智能化辅助试井解释[J].西南石油学院学报,1999,11(2):5-8.
文章导航

/