收稿日期: 2008-01-11
修回日期: 2008-04-08
网络出版日期: 2008-06-10
Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin
Received date: 2008-01-11
Revised date: 2008-04-08
Online published: 2008-06-10
塔里木盆地下古生界白云岩是重要的油气储层,由于经历了长期而复杂的成岩演化过程,其储集空间以次生孔隙为主,其中微孔储集体系分布广泛,很不均匀,并且规律性不强。通过对大量白云岩岩心薄片与显微照片的观察,结合电子探针分析,认为埋藏过程中白云石与方解石的差异溶蚀是微孔储集体系形成的主要方式,白云岩的物质组分与微观结构对白云岩微孔的形成具有重要的制约作用;从白云岩成分上来讲,含灰云岩与灰质云岩是白云岩储层的主要岩性;白云岩中方解石的溶解与否,受方解石赋存状态的制约。根据白云岩显微结构中方解石和白云石两者之间的关系,将储集物性较好的粒状白云岩大致分为3个亚类,即粒间填隙型、粒内包含型、包含—填隙混合型,其中以第1种形式即“粒间填隙型”分布的方解石最容易被溶蚀并形成次生孔隙,包含—填隙混合型次之,粒内包含型最差。
王小林;胡文瑄;张军涛;钱一雄;朱井泉;吴仕强 . 白云岩物质组分与结构对微孔储集体系形成的制约——以塔里木盆地下古生界白云岩为例[J]. 天然气地球科学, 2008 , 19(3) : 320 -326 . DOI: 10.11764/j.issn.1672-1926.2008.03.320
The lower Paleozoic dolomite sequences are important petroleum reservoirs in the Tarim basin. After a long and complex diagenetic process, the secondary dissolution pores are the main reservoir spaces. The distribution of the micro\|porosities is wide and not uniform. The diverse\|dissolution between calcite and dolomite during the burial is considered as an important mechanism for the micro\|porosities reservoir system’s formation based on the observation of plenty of well thin sections and micro\|photos, as well as the EPMA data, and this process is constrained by the components and textures of dolomite despite the influence of fluids. Limestone bearing dolomite and calcitic dolomite are the main reservoir rocks with reference to the component of dolomite. However, not all the calcite can be dissolved during the burial process. The distribution type of the calcite in the dolomite has been used to subdivide the sucrosic dolomite into three types, including intercrystalline filling type, innercrystalline filling type and inter\|innercrystalline filling mixed type, and the intercrystalline filling sucrosic dolomite can form fine micro\|porosities during burial dissolution.
[1] Zenger D H, Dunham J B, Ethington R I. Concepts and models of dolomitization[C]//Spec Publ. Tulas: SEPM, 1980,28:320.
[2] Murray R C. Origin of porosity in carbonate rocks[J]. J Sediment Petrol, 1960, (30): 59-84.
[3] Weyl P K. Porosity through dolomitization:conservation of mass requirements[J]. J Sediment Petrol, 1960, (30): 85-90.
[4] 林会喜.济阳坳陷桩海地区下古生界白云岩储集空间形成机理[J].油气地质与采收率,2006, 15(3):5-7,11.
[5] Schmoker J W, Halley R B. Carbonate porosity versus depth: a predictable relation for south Florida[J]. AAPG Bulletin, 1982, (66): 2561-2570.
[6] Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitization[C]// Spec Publ Purser B, Tucker M, Zenger D. Dolomites-A Volume in Honor of Dolomieu. International Association of Sedimentologists. Cambridge: Blackwell Scientific Publications, 1994: 325-341.
[7] Arthur H Saller, Nuel Henderson. Distribution of Porosity and Permeability in Platform Dolomites:Insight from the Permian of West Texas[J]. AAPG Bullein, 1998, (82): 1528-1550.
[8] Ruzyla K, Friedman G M. Factors controlling porosity in dolomite reservoirs in the Ordovician Red River Formation,Cabin Creek field, Montana[M]// Roehl P O, Choquette P W. Carbonate Petroleum Reservoirs. New York: Springer-Verlag, 1985: 39-69.
[9] Bebout D G, Lucia F J, Hocott C R,et al. Characterization of the Grayburg reservoir,University Lands Dune field, Crane County, Texas[M]// University of Texas at Austin. Bureau of Economic Geology Report of Investigations 168, 1987: 104 .
[10] Major R P, Bebout D G, Lucia F J. Depositional facies and porosity distribution, Permian (Guadalupian) San Andres and Grayburg formations, P. J. W. D. M. field complex,Central Basin platform, west Texas[M]// Lomando A J, Harris P M. Giant oil and gas fields: a core workshop. SEPM Core Workshop 12. 1988: 615-648.
[11] Kerans C, Lucia F J, Senger R K. Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogs[J]. AAPG Bulletin, 1994, (78): 181-216.
[12] Sun S Q. Dolomite reservoirs: porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, (79): 186-204.
[13]
[14] 王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义[J].西安石油大学学报:自然科学版,2004,19(4):72-76.
[15] Warren J . Dolomite :Occurrence ,evolution and economically important associations [J]. Earth Science Review, 2000 , (52) : 1-81.
[16] 顾家裕,朱筱敏,贾进华,等.塔里木盆地沉积与储层[M].北京:石油工业出版,2003:185-204.
[17] 王雷,史基安,王琪,等.鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析[J].油气地质与采收率, 2005,12(4):10-13.
[18] 金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253.
[19] 杨宁,吕修祥,郑多明.塔里木盆地火成岩对碳酸盐岩储层的改造作用[J].西安石油大学学报:自然科学版,2005,20(4):1-4.
[20] 陈文彬,杨平,张予杰,等.南羌塘盆地扎仁古油藏白云岩储层特征及成因研究[J].沉积与特提斯地质,2006,26(2):42-46.
[21] 杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下白云石溶解过程的实验模拟研究[J].沉积学报,1995,13(3):83-88.
[22] 刘永福,殷军,张雄伟,等.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.
[23] 刘树根,马永生,黄文明,等.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007,18(4):485-496.
[24] 魏国齐,杨威,张林,等.川东北飞仙关组鲕滩储层白云石化成因模式[J].天然气地球科学,2005,16(2):162-166.
[25] 张军涛,胡文瑄,钱一雄,等.塔里木盆地白云岩储层类型划分、测井模型及其应用[J].地质学报,2008:待刊.
[26][KG*7/8]Landes K K. Porosity through dolomitization[J]. AAPG Bulletin, 1946, (30): 305-318.
[27] Murray R C. Origin of porosity in carbonate rocks[J]. J Sediment Petrol, 1960, (30): 59-84.
[28] Halley R B, Schmoker J W.High porosity Cenozoic rocks of South Florida: progressive loss of porosity with depth[J]. Am Assoc Petrol Geol Bull, 1983, (67): 191-200.
[29] Purser B H, Brown A, Aissaoui D M. Nature, origins and porosity in dolomites[C]// Spec Publ. Purser B, Tucker M, Zenger D. Dolomites. International Association of Sedimentologists. 1994:283-308.
[30] Amthor J E, Mountjoy E W, Machel H G. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups; implications for reservoir development and prediction in carbonates[J]. Am Assoc Petrol Geol Bull, 1994: (78) ,1541-1559.
[31] 朱井泉,吴仕强,王国学.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008:15(2):67-79.
/
〈 |
|
〉 |