天然气地球科学 ›› 2019, Vol. 30 ›› Issue (9): 1319–1331.doi: 10.11764/j.issn.1672-1926.2019.04.009

• 非常规天然气 • 上一篇    下一篇

四川盆地及周缘下寒武统富有机质页岩孔隙发育特征

熊亮()   

  1. 中国石化西南油气分公司勘探开发研究院,四川 成都 610041
  • 收稿日期:2019-03-06 修回日期:2019-04-25 出版日期:2019-09-10 发布日期:2019-10-14
  • 作者简介:熊亮(1975-),男,四川宜宾人,高级工程师,主要从事常规、非常规油气勘探研究及生产管理工作. E-mail:xiongliang.xnyq@sinopec.com.
  • 基金资助:
    中国石化科技部重点科技项目“深层页岩气综合评价及开发技术政策”(P18058-1)

The characteristics of pore development of the Lower Cambrian organic⁃rich shale in Sichuan Basin and its periphery

Liang Xiong()   

  1. Exploration and Production Research Institute, SINOPEC Southwest Company, Chengdu 610041, China
  • Received:2019-03-06 Revised:2019-04-25 Online:2019-09-10 Published:2019-10-14

摘要:

四川盆地及周缘下寒武统富有机质页岩分布范围广、厚度大,是页岩气勘探的重要接替层位。以多口重点钻井岩心资料为基础,利用扫描电镜、氮气吸附等实验分析方法,对下寒武统富有机质页岩的孔隙类型、孔隙结构等进行系统研究,并探讨了下寒武统富有机质页岩孔隙发育的主要控制因素。结果表明:不同地区的下寒武统富有机质页岩孔隙发育存在显著的差异,孔隙度与TOC含量之间关系复杂,受到有机质组成和热成熟度的影响,主要表现为有机质组成和热成熟度控制了有机孔的发育。下寒武统富有机质页岩孔隙结构多样,且不同成熟度的页岩具有不同的孔隙结构,随着热成熟度的增加,页岩微孔消失、孔容和比表面积均减小。热成熟度是四川盆地及周缘下寒武统页岩气勘探与评价的最重要参数之一。

关键词: 下寒武统, 孔隙发育, 热成熟度, 有机质组成, 主控因素

Abstract:

Lower Cambrian organic-rich shale is widely distributed with great thickness in Sichuan Basin and its periphery, which is the significant replacing layer of shale gas exploration. Based on the shale cores from several key wells, this paper systematically investigated the pore types and structures of Lower Cambrian organic-rich shale using SEM and low pressure nitrogen adsorption, and discussed the main controlling factors of pore development of Lower Cambrian organic-rich shale. The results indicate that there are significant differences between Lower Cambrian organic-rich shale from different regions. The relationship between total organic carbon content (TOC) and porosity is complex due to the influences from thermal maturation and organic matter composition which controls the development of organic matter-hosted pores. The Lower Cambrian organic-rich shale has various pore structures. With increasing maturation, pore structure changes by micropore vanishing, and specific surface area and pore volume decrease. Therefore, thermal maturation is one of the most important parameters for shale gas exploration and assessment of the Lower Cambrian in Sichuan Basin and its periphery.

Key words: Lower Cambrian, Pore development, Thermal maturation, Organic matter composition, Controlling factor

中图分类号: 

  • TE122.2

图1

四川盆地及周缘下寒武统钻井分布简图(据文献[5]修改)"

图2

JY1井下寒武统泥页岩储层特征综合剖面"

图3

JY1井下寒武统页岩显微照片"

图4

HY1井下寒武统泥页岩储层特征综合剖面"

图5

HY1井下寒武统页岩显微照片"

图6

EY1井下寒武统页岩储层特征综合剖面"

图7

EY1井下寒武统页岩显微照片"

图8

JY1井筇竹寺组富有机质泥质页岩SEM微观特征 (a)充填于黄铁矿晶间有机质发育海绵状孔隙, 3 288.46m ,50 000×;(b)充填于石英矿物骨架间有机质发育海绵状孔, 3 290.23m,50 000×;(c)残余原生有机质内发育许多微小孔隙, 3 296.8m, 120 000×;(d)黏土矿物晶间孔未被有机质充填,与黏土矿物共存的有机质发育海绵状孔隙, 3 296.8m,25 000×"

图9

HY1井九门冲组富有机质硅质页岩SEM微观特征 (a)10 000×,2 388m,条带状残余原生有机质(红箭头)不发育孔隙,充填状次生有机质(黄箭头)发育海绵状孔隙;(b)65 000×,2 388m,残余原生有机质放大,不发育孔隙;(c)120 000×,2 398m,充填于矿物骨架间的有机质发育海绵状孔隙,石英矿物发育粒内孔;(d)65 000×,2 406m,充填于石英矿物骨架间的有机质发育海绵状孔隙,石英矿物发育粒内孔"

图10

EY1井水井沱组富有机质硅质页岩SEM微观特征 (a)25 000×,3 822m,充填于石英矿物骨架间有机质基本不发育孔隙;(b)20 000×,3 845m,有机质发育不规则形态的孔隙,孔径分布不均;(c)80 000×,3 890m,有机质零星发育少量孔隙,孔径较小;(d)7 000×,3 912m,充填于石英矿物骨架间有机质不发育孔隙"

图11

EY1井水井沱组灰质泥岩SEM微观特征 (a)1 200×,3 857.85m,有机质充填于矿物基质中,浅灰色为黏土,深灰色为方解石,黑色为有机质;(b)80 000×,3 877.08m,充填有机质发育海绵状孔隙,孔径小于100nm"

图12

下寒武统富有机质页岩氮气吸附—脱附曲线"

表1

下寒武统富有机质页岩比表面积和孔容数据"

井号 深度/m

TOC

/%

总孔容

/(cm3/100g)

非微孔孔容

/(cm3/100g)

微孔孔容

/(cm3/100g)

比表面积

/(m2/g)

非微孔比表面积

/(m2/g)

微孔比表面积

/(m2/g)

JY1 3 288.95 1.00 1.12 0.73 0.39 11.59 1.71 9.88
3 290.8 1.56 0.94 0.48 0.45 13.37 1.81 11.56
3 292.1 1.25 1.00 0.65 0.35 11.41 2.87 8.55
3 296.8 3.01 1.85 1.43 0.42 17.63 7.75 9.88
3 298.2 2.10 0.91 0.39 0.52 14.71 1.60 13.11
HY1 2 371 7.48 1.69 0.97 0.72 22.01 1.35 20.66
2 374 7.31 1.19 0.47 0.72 20.96 2.57 18.39
2 378 5.53 0.92 0.46 0.46 13.07 1.26 11.81
2 383 5.24 1.60 0.96 0.64 19.46 3.56 15.89
2 388 3.46 1.51 0.92 0.59 18.85 4.67 14.17
2 392 5.15 1.54 1.06 0.48 16.23 4.55 11.68
2 398 5.08 1.39 0.88 0.52 15.08 1.90 13.18
2 402 5.61 1.42 0.82 0.60 17.89 2.65 15.25
2 406 4.87 2.01 1.34 0.67 23.47 8.13 15.34
2 411 5.71 1.88 1.25 0.63 22.86 7.94 14.92
2 414 5.89 1.84 1.27 0.58 21.89 7.94 13.95
2 417 3.77 2.20 1.87 0.33 19.34 12.41 6.93
2 420.39 5.55 1.73 1.31 0.43 18.54 8.60 9.94
2 422.5 6.92 1.20 0.83 0.37 13.78 4.93 8.85
EY1 3 814.9 8.95 0.64 0.64 0 3.94 3.94 0
3 835.12 5.86 0.83 0.83 0 8.29 8.29 0
3 844.9 5.75 0.66 0.66 0 3.70 3.70 0
3 857.85 2.29 1.31 1.31 0 3.99 3.99 0
3 877.08 1.2 0.93 0.93 0 1.53 1.53 0
3 901.45 7.44 0.57 0.57 0 1.59 1.59 0

图13

下寒武统页岩孔隙度与TOC的关系"

图14

下寒武统页岩孔隙度与黏土含量的关系"

图15

下寒武统页岩比表面积和孔容与TOC含量的关系"

1 Li Hai , Liu An , Luo Shengyuan , et al . Pore structure characteristics and development control factors of Cambrian shale in the Yichang area, western Hubei[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(6): 16-23.
李海,刘安,罗胜元,等 . 鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素[J]. 油气地区与采收率,2018,25(6):16-23.
2 Haq B U , Schutter S R . A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
3 Li Wei , Yu Huaqi , Deng Hongbin . Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 725-735.
4 Wei C , Wang H , Sun S , et al . Potential investigation of shale gas reservoirs, southern China[C]// Wei C, Wang H, Sun S, et al . SPE Canadian Unconventional Resources Conference, 30 October-1 November, Calgary, Alberta, Canada: Society of Petroleum Engineers, 2012:162828-MS.
5 Liu Zhongbao , Gao Bo , Zhang Yuying , et al . Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
刘忠宝,高波,张钰莹,等 . 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.
6 Liu Yifeng , Qiu Nansheng , Xie Zengye , et al . The formation and preservation of over-pressure in old formations: Taking the Cambrian in the central of Sichuan Basin as an instance[J]. Natural Gas Geoscience, 2016, 27(8): 1439-1446.
刘一锋,邱楠生,谢增业,等 . 川中古隆起寒武系超压形成与保存[J]. 天然气地球科学,2016,27(8): 1439-1446.
7 Zou Caineng , Yang Zhi , Dai Jinxing , et al . The characteristics and significance of conventional and unconventional Sinian-Silurian gas systems in the Sichuan Basin, central China[J]. Marine and Petroleum Geology, 2015, 64: 386-402.
8 Potter C J . Paleozoic shale gas resources in the Sichuan Basin, China [J]. AAPG Bulletin, 2018, 102(6): 987-1009.
9 Dai Jinxing , Zou Caineng , Qin Shengfei , et al . Geology of giant gas fields in China[J]. Marine and Petroleum Geology, 2008, 25: 320-334.
10 Cheng Keming , Wang Shiqian , Dong Dazhong , et al . The shale gas reservoir forming conditions of Lower Cambrian Qiongzhusi Formation in Upper Yangtze area[J]. Natural Gas Industry, 2009, 29(5): 40-44.
程克明,王世谦,董大忠,等 . 上扬子区下寒武统筇竹寺组页岩气成藏条件[J]. 天然气工业, 2009, 29(5): 40-44.
11 Meng Xianwu , Tian Jingchun , Zhang Xiang , et al . Characteristics of shale gas of the Qiongzhusi Formation in Jingyan area of southwest Sichuan[J].Journal of Mineralogy and Petrology, 2014, 34(2): 96-105.
孟宪武,田景春,张翔,等 . 川西南井研地区筇竹寺组页岩气特征[J]. 矿物岩石,2014,34(2): 96-105.
12 Liu Bin , Fu Yuwu . Practice on shale gas volume fracturing for Qiongzhusi Formation in JY1HF Well[J]. Complex Hydrocarbon Reservoirs, 2016, 9(3): 69-73.
刘斌,付育武 . JY1HF井筇竹寺组页岩气体积压裂实践[J]. 复杂油气藏,2016,9(3): 69-73.
13 Bernard S , Wirth R , Schreiber A , et al . Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11.
14 Schieber J , Lazar R , Bohacs K , et al . An SEM study of porosity in the Eagle Ford shale of Texas:Pore types and porosity distribution in a depositional and sequence stratigraphic context [C]// Schieber J, Lazar R, Bohacs K, et al . AAPG Memoir the Eagle Ford Shale: A Renaissance in U.S. Oil Production. Tulsa, OK: The American Association of Petroleum Geologists,2016, (110): 167-186.
15 Li Y , SchieberJ, Fan T , et al . Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou,South China:The controls of shale facies on pore distribution[J].Marine and Petroleum Geology,2018,92: 97-718.
16 Sing K S , Everett D H , Haul R W , et al . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985, 57: 603-619.
17 Brunauer S , Emmett P H , Teller E . Adorption of gases in multimolecular layers[J].Journal of the American Chemical Society, 1938, 60: 309-319.
18 De Boer J H , Lippens B C , Linsen B G , et al . The t-curve of multimolecular N2-adsorption[J]. Journal of Colloid Interface Science,1966, 21: 405-414.
19 Tian Hui , Pan Lei , Zhang Tongwei , et al . Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, southwestern China[J].Marine and Petroleum Geology, 2015, 62: 28-43.
20 Thommes M . Physical adsorption characterization of nanoporous materials[J].Chemie Ingenieur Technik, 2010, 82(7): 1059-1073.
21 Garcia-Martinez J , Cazorla-Amoros D , Linares-Solano A . Further evidences of the usefulness of CO2 adsorption to characterize microporous solids[J].Studies in Surface Science and Catalysis, 2000, 128: 485-494.
22 Tian Hui , Pan Lei , Xiao Xianming , et al . A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology, 2013, 48: 8-19.
23 Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al . Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J].Marine and Petroleum Geology, 2017, 86: 655-674.
24 Milliken K L , Rudnicki M , Awwiller D N , et al . Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97: 177-200.
25 Misch D , Mendez-Martin F , Hawranek G , et al . SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine): Pore space evolution in organic matter during thermal maturation[C]//Misch D, Mendez-Martin F, Hawranek G, et al . IOP Conference Series: Materials Science and Engineering, 2016, 109:012010.
26 Liu Bei , Schieber J , Mastalerz M . Combined SEM and reflected light petrography of organic matter in New Albany shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation[J].International Journal of Coal Geology, 2017, 184: 57-72.
27 Ji Liming , Wu Yuandong , He Cong , et al . High pressure simulation of organic-rich mudstone and shale for hydrocarbon generation and pore evolution[J].Acta Petrolei Sinica, 2016, 37(2): 172-181.
吉利明,吴远东,贺聪,等 . 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181.
28 Zhang Jiankun , He Sheng , Yan Xinlin , et al . Structural characteristics and thermal evolution of nanoporosity in shales[J].Journal of China University of Petroleum:Edition of Natural Science, 2017, 41(1): 11-24.
张建坤,何生,颜新林,等 . 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017, 41(1): 11-24.
29 Chalmers G R L , Bustin R M . Lower Cretaceous gas shales in northeastern British Columbia: Part I. Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1–21.
30 Ross D J K , Bustin R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology, 2009, 26: 916-927.
31 Shao Xinhe , Pang Xiongqi , Li Qianwen ,et al .Pore structure and fractal characteristics of organic-rich shales:A case study of the Lower Silurian Longmaxi shales in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2017, 80:192-202.
32 Hu Haiyan , Hao Fang , Lin Junfeng , et al . Organic matter-hosted pore system in the Wufeng-Longmaxi shale, Jiaoshiba area, eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173: 40-50.
33 Ambrose R J , Hartman R C , Diaz-Campos M , et al . New pore-scale considerations for shale gas in place calculations [C]//Ambrose R J, Hartman R C, Diaz-Campos M, et al . SPE Unconventional Gas Conference, 23-25 February, Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers, 2010:131772-MS.
34 Curtis M E , Sondergeld C H , Ambrose R J , et al . Structural characterization of gas shales on the micro- and nano-scales [C]//Curtis M E, Sondergeld C H, Ambrose R J, et al . Canadian Unconventional Resources and International Petroleum Conference, 19-21 October, Calgary, Alberta, Canada: Society of Petroleum Engineers, 2010: 137693-MS.
35 Curtis M E , Ambrose R J , Sondergeld C H , et al . Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolutionimaging[J].AAPG Bulletin, 2012, 96 (4): 665-677.
36 Passey Q R , Bohacs K M , Esch W L , et al . From oil-prone source rock to gas-producing shale reservoir - geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//Passey Q R, Bohacs K M, Esch W L, et al . International Oil and Gas Conference and Exhibition in China, 8-10 June, Beijing:China. Society of Petroleum Engineers, 2010: 131350-MS.
37 Loucks R G , Reed R M , Ruppel S C , et al . Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research, 2009, 79: 848-861.
38 Curtis M E , Cardott B J , Sondergeld C H , et al . Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology, 2012, 103: 26-31.
39 Bernard S , Horsfield B , Schulz H M , et al . Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia shale (Lower Toarcian, northern Germany)[J].Marineand Petroleum Geology, 2012, 31(1): 70-89.
[1] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
[2] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[3] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[4] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[5] 杨智峰, 曾溅辉, 韩菲. 鄂尔多斯盆地西南部延长组7段致密油充注影响因素分析[J]. 天然气地球科学, 2018, 29(7): 961-972.
[6] 余川, 曾春林, 周洵, 聂海宽, 余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[7] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[8] 陈跃,马东民,吴圣,李新虎,方世跃,郭晨. 鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J]. 天然气地球科学, 2018, 29(2): 189-198.
[9] 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式[J]. 天然气地球科学, 2018, 29(12): 1706-1714.
[10] 唐大海, 王小娟, 陈双玲, 吴长江, 杨广广, 温梦晗, 朱华. 四川盆地中台山地区须家河组致密砂岩气藏富集高产主控因素[J]. 天然气地球科学, 2018, 29(11): 1575-1584.
[11] 杨晓盈, 李永臣, 朱文涛, 黄纪勇, 单永乐, 张强. 贵州煤层气高产主控因素及甜点区综合评价模型[J]. 天然气地球科学, 2018, 29(11): 1664-1671.
[12] 赵志平,官大勇,韦阿娟,刘朋波,付立. 渤海海域新生界地层水化学特征及主控因素[J]. 天然气地球科学, 2017, 28(9): 1396-1405.
[13] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[14] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[15] 王烽. 鄂尔多斯盆地东部神木区块二叠系山西组致密砂岩气低产主控因素分析[J]. 天然气地球科学, 2017, 28(5): 687-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!