天然气地球科学

• 天然气地质学 • 上一篇    下一篇

次生生物甲烷与生物降解作用的判识——以准噶尔盆地腹部陆梁油气田为例

龚德瑜,张越迁,郭文建,宋志华,卢山,吴卫安   

  1. 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油新疆油田公司勘探事业部,新疆 克拉玛依 834000;
    3.中国石油新疆油田公司勘探开发研究院,新疆 克拉玛依 834000
  • 收稿日期:2019-02-05 修回日期:2019-03-18 出版日期:2019-07-10
  • 作者简介:龚德瑜(1983-),男,江苏苏州人,高级工程师,博士,主要从事油气地质与地球化学研究.E-mail:deyugong@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金青年基金“准噶尔盆地石炭系凝灰质烃源岩发育环境与生烃潜力研究”(编号:41802177)资助.

The identification of secondary microbial methane and biodegradation:Case study of Luliang oil and gas field,Junggar Basin

Gong De-yu,Zhang Yue-qian,Guo Wen-jian,Song Zhi-hua,Lu Shan,Wu Wei-an   

  1. 1.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China;
    2.Exploration Division,Xinjiang Oil Field Company,PetroChina,Karamay 834000,China;
    3.Research Institute of Petroleum Exploration and Development,Xinjiang Oil Field Company,PetroChina,Karamay 834000,China
  • Received:2019-02-05 Revised:2019-03-18 Online:2019-07-10
  • About author:Gong Deyu(1983-), Male, Senior engineer, Ph.D, Mainly engaged in petroleum geology and geochemistry research. E-mail:deyugong@petrochina.com.cn.
  • Supported by:

    Supported by the National Natural Science Foundation for Young Scholar of China “Development environment and hydrocarbon generation potential of carboniferous tuff source rocks in Junggar Basin” (Grant No. 41802177).

摘要: “次生生物气”是指原油遭受生物降解后生成的天然气,由于其成分几乎全部为甲烷,因此又称为“次生生物甲烷”。以准噶尔盆地陆梁油气田为例,基于天然气组分和稳定碳同位素组成,结合伴生原油的轻烃地球化学特征,系统研究了次生生物甲烷和生物降解作用的判识方法。研究表明:当热成因天然气与次生生物甲烷混合时,甲烷碳同位素组成变轻,天然气组分变干。同时,此类天然气通常与埋深(地温)和生物降解油藏密切相关。通过原油的轻烃化合物特征可以有效判别油藏是否遭受生物降解。次生生物甲烷的生成常常还伴随着原生热成因气中重烃气组分的选择性降解,造成天然气干燥系数变大,重烃气碳同位素组成富集13C,甚至发生倒转。目前使用的各类天然气成因判识图版只适用于原生热成因气,使用时必须充分考虑是否存在各类次生改造作用的影响。

关键词: 次生生物甲烷, 选择性生物降解, 稳定碳同位素组成, 轻烃, 准噶尔盆地

Abstract: The “secondary microbial gas” is defined as natural gas generated via the biodegradation of oil reservoirs.Since methane dominates,it is also called “secondary microbial methane”.
Taking Luliang oil and gas field in the Junggar Basin as example,the methods for identifying secondary microbial methane and selective biodegradation of alkane gases were fully discussed in this study based on the molecular and stable carbon isotopes of natural gas as well as the geochemical characteristics of low molecular weight hydrocarbons of oil reservoirs.When the thermogenic gas is mixed with secondary microbial methane,its δ13C -CH4 ratio tends to be lighter with the C1/C1-4 increasing.In the meantime,there is a tight relationship between secondary microbial methane,burial depth of gas reservoirs and the existence of biodegraded oil reserves.The methanogenesis is commonly accompanied by the selective biodegradation of C2-4 alkane gases,which results in the increase of gas dryness coefficients and the enrichment of 13C (even the reversal of carbon isotopes).Most currently used empirical diagrams to identify the gas genetic types are only applicable to the original thermogenic gases.All kinds of secondary alterations should be fully taken into consideration when these diagrams are used.

Key words: Secondary microbial methane, Selective biodegradation, Stable carbons isotopes, Low molecular weight hydrocarbons, Junggar Basin

中图分类号: 

  • TE122.1+13
[1]Milkov A V.Methanogenic biodegradation of petroleum in the west Siberian Basin(Russia):Significance for formation of giant Cenomanian gas pools[J].AAPG Bulletin,2010,94:1485-1541.
[2]Milkov A V,Dzou L.Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oil in a deep hot reservoir[J].Geology,2007,35(5):455-458.
[3]Milkov A V,Goebel E,Dzou L,et al.Compartmentalization and time-lapse geochemical reservoir surveillance of the Horn Mountain oil field,deep-water Gulf of Mexico[J].AAPG Bulletin,2007,91:847-876.
[4]Bernard F P,Connan J,Magot M.Indigenous microorganisms in connate water of many oil fields:A new tool in exploration and production techniques[C]∥67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers,Washington D C,October 1992:467-476(SPE Paper 24811).
[5]Scott A R,Kaiser W R,Ayers Jr W B.Thermogenic and secondary biogenic gases,San Juan Basin,Colorado and New Mexico-Implications for coalbed gas producibility[J].AAPG Bulletin,1997,78(8):1186-1209.
[6]Bokova E N.Formation of methane during microbial degradation of oil[J].Polevaya I Promyslovaya Geochimiya,1953,2:25-27.
[7]Ekzercev V A.Formation of methane by microorganisms in oil fields[J].Geokhimiya,1960,1:362-370.
[8]Zengler K,Richnow H H,Rossello-Mora R,et al.Methane formation from long-chain alkanes by anaerobic microorganisms[J].Nature,1999,401:266-269.
[9]Anderson R T,Lovley D R.Hexadecane decay by methanogenesis[J].Nature,2000,404:722-723.
[10]Townsend G T,Prince R C,Suflita J M.Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer[J].Environmental Science & Technology,2003,37(22):5213-5218.
[11]Siddique T,Fedorak P M,Foght J M.Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions[J].Environmental Science & Technology,2006,40:5459-5464.
[12]Gieg L M,Duncan K E,Suflita J M.Bioenergy production via microbial conversion of residual oil to natural gas[J].Applied and Environmental Microbiology,2008,74(10):3022-3029.
[13]Jones D M,Head I M,Gray N D,et al.Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J].Nature,2008,451:176-180.
[14]Gray N D,Sherry A,Larter S R,et al.Biogenic methane production in formation waters from a large gas field in the North Sea[J].Extremophiles,2009,13(3):511-519.
[15]Pallasser R J.Recognising biodegradation in gas/oil accumulations through the δ13C compositions of gas components[J].Organic Geochemistry,2000,31(12):1363-1373.
[16]Lu Jungang,Wang Li,Chen Shijia,et al.Features and origin of oil degraded gas of Santai field in Junggar Basin,NW China[J].Petroleum Exploration and Development,2015,42(4):466-474.
[17]Huang Shipeng,Feng Ziqi,Gu Tuan,et al.Multiple origins of the Paleogene natural gases and effects of secondary alteration in Liaohe Basin,northeast China:Insights from the molecular and stable isotopic compositions[J].International Journal of Coal Geology,2017,172(1):134-148
[18]Zhu Guangyou,Wang Zhengjun,Cao Zhonghong.Origin and source of the Cenozoic gas in the beach area of the Nanpu Sag,Bohai Bay Basin,China[J].Energy Exploration & Exploitation,2014,32(1):93-111.
[19]Wei Yanzhao,Gong Deyu,Wang Feng,et al.Bacteria effects on geochemical characteristics of natural gas:A case study in the Shinan Oil-Gas Field,central Junggar Basin[J].Natural Gas Geoscience,2016,27(12):2176-2184.
卫延召,龚德瑜,王峰,等.细菌作用对天然气地球化学组成的影响——以准噶尔盆地腹部石南油气田为例[J].天然气地球科学,2016,27(12):2176-2184.
[20]Jeffrey A W,Alimi H M,Jenden P D.Geochemistry of Los Angeles Basin oil and gas systems[C]∥Biddle K:T.(Ed.),Active Margin Basins,Tulsa,Okla.AAPG Memoir,1991,52:197-219.
[21]Lillis P G,Warden A,Claypool G E,et al.Petroleum systems of the San Joaquin basin province -geochemical characteristics of gas types[C]∥Hosford Scheirer A.(Ed.),Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province,California,US Geological Survey Professional Paper 1713,2007.
[22]Roadifer R E.Size distributions of the world’s largest known oil and tar accumulations[C]∥Meyer R F(Ed.),Exploration for Heavy Crude Oil and Natural Bitumen.AAPG Studies in Geology,Tulsa,Oklahoma,1987,25:3-23.
[23]Liao Jiande,Kang Sufang,Li Minghe,et al.Geochemistry research of oil reservoirs in Luliang Oil Fields[J].Petroleum Geology and Recovery Efficiency,2003,10(4):29-31.
廖健德,康素芳,李明河,等.陆梁油田油藏地球化学研究[J].油气地质与采收率,2003,10(4):29-31.
[24]Tang Yong,Kong Yuhua,Sheng Jianhong,et al.Controlling factors of reservoir formation in Tamp-type lithostratigraphic reservoir in hinterland of Junggar Basin[J].Acta Sedimentologica Sinica,2009,27(3):567-572.
唐勇,孔玉华,盛建红,等.准噶尔盆地腹部缓坡型岩性地层油气藏成藏控制因素分析[J].沉积学报,2009,27(3):567-572.
[25]Wang Xulong,Zhi Dongming,Wang Yutao,et al.Organic Geochemistry of Source Rocks and Hydrocarbons in the Junggar Basin[M].Beijing:Petroleum Industry Press,2013:18-73.
王绪龙,支东明,王屿涛,等.准噶尔盆地烃源岩与油气地球化学[M].北京:石油工业出版社,2013:18-73.
[26]Cao J,Wang,X,Sun P,et al.Geochemistry and origins of natural gases in the central Junggar Basin,northwest China[J].Organic Geochemistry,2012,53:166-176.
[27]Li Jian,Jiang Zhenglong,Luo Xia,et al.Geochemical characteristics of coal measure source rocks and coal-derived gas in Junggar Basin,NW China[J].Petroleum Exploration and Development,2009,36(3):365-374.
李剑,姜正龙,罗霞,等.准噶尔盆地煤系烃源岩及煤成气地球化学特征[J].石油勘探与开发,2009,36(3):365-374.
[28]Gong Deyu,Li Jianzhong,Ablimit I,et al.Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China[J].Marine and Petroleum Geology,2018,96:474-500.
[29]Sun Ping’an,Wang Xulong,Tang Yong,et al.Geochemical constraints on the multiple origins of shallow-buried natural gases in the Junggar Basin[J].Geochimica,2012,41(2):109-121.
孙平安,王绪龙,唐勇,等.准噶尔盆地浅层天然气多种成因地球化学研究[J].地球化学,41(2):109-121.
[30]Dai Jinxing,Pei Xigu,Qi Houfa.China Natural Gas Geology(Vol.1)[M].Beijing:Petroleum Industry Press,1992:65-87.
戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)[M].北京:石油工业出版社,1992:65-87.
[31]Dai J X,Gong D Y,Ni Y Y,et al.Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China[J].Organic Geochemistry,2014,74:123-142.
[32]Bernard B B,Brooks J M,Sackett W M.Light hydrocarbons in recent Texas continental shelf and slope sediments[J].Journal of Geophysical Research,1978,83:4053-4061.
[33]Whiticar M J.Correlation of natural gases with their sources[C]∥Magoon L,Dow W.The Petroleum System-From Source to Trap.New York:AAPG Memoir,1994,60:261-284.
[34]Liu Wenhui,Xu Yongchang.A two stage model of carbon isotopic fractionation in coal gas[J].Geochimica,1999,28(4):359-366.
刘文汇,徐永昌.煤成气碳同位素演化二阶段分馏模式及机理[J].地球化学,1999,28(4):359-366.
[35]George S C,Boreham C J,Minifie S A,et al.The effect of minor to moderate biodegradation on C5 to C9hydrocarbons in crude oils[J].Organic Geochemistry,2002,33(12):1293-1317.
[36]Gong D Y,Ma R L,Chen G,et al.Geochemical characteristics of biodegraded natural gas and its associated low molecular weight hydrocarbons[J].Journal of Natural Gas Science and Engineering,2017,46:338-349.
[37]Welte D H,Kratochvil H,Rullktter H,et al.Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin[J].Chemical Geology,1982,35(1/2):33-68.
[38]Chang T,Lee M R,Lin L H,et al.Application of C7 hydrocarbons technique to oil and condensate from type Ⅲ organic matter in Northwestern Taiwan[J].International Journal of Coal Geology,2007,71:103-114.
[39]Thompson K F M.Classification and thermal history of petroleum based on light hydrocarbons[J].Geochimica et Cosmochimica Acta,1983,47(2):303-316.
[40]James A T,Burns B J.Microbial alteration of subsurface natural gas accumulations[J].AAPG Bulletin,1984,68(8):957-960.
[41]Pallasser R J.Recognizing biodegradation in gas/oil accumulations through the δ13C compositions of gas components[J].Organic Geochemistry,2000,31(12):1363-1373.
[42]Philippi G T.On the depth,time and mechanism of origin of the heavy to medium-gravity naphthenic crude oils[J].Geochimica et Cosmochimica Acta,1977,41(1):33-52.
[43]Larter S,Huang H,Adams J,et al.The controls on the composition of biodegraded oils in the deep subsurface.Part Ⅱ -geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction[J].AAPG Bulletin,2006,90(6):921-938.
[44]James A T.Correlation of natural gas by use of carbon isotope distribution between hydrocarbon components[J].AAPG Bulletin,1983,67(7):1176-1191.
[45]Connan J,Lacrampe-Coulome G,Magot M.Origin of gases in reservoirs[C]∥Dolenc D.Proceedings of the 1995 International Gas Research Conference,Government Institutes,Rockville,1995:21-62.
[46]Wilkes H,Boreham C,Harms G,et al.Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria[J].Organic Geochemistry,2000,31:101-115.
[47]Clayton C J,Hay S J,Baylis S A,et al.Alteration of natural gas during leakage from a North Sea salt diapir field[J].Marine Geology,1997,137:69-80.
[48]Palmer S E.Effect of biodegradation and water washing on crude oil composition[C]∥Engel M H,Macko S A.Organic Geochemistry,New York:Plenum Press,1993:511-533.
[49]Larter S,Hockey A,Aplin A,et al.When biodegradtion preserves petroleum:North Sea oil rimmed gas accumulations(ORGA’S)[C]∥Schoell M,Claypool G E(Eds.).Proceedings of the AAPG Hedberg Research Conference,June 6-10,1999.
[50]Whiticar M J.Correlation of natural gases with their sources[C]∥Magoon L B,Dow W G(Eds.).The Petroleum System:from Source to Trap,AAPG Memoir,1994,60:261-283.

[1] 卫延召, 宋志华, 奇瑞, 王伟, 龚德瑜, 王峰. 准噶尔盆地陆梁隆起东部滴北凸起天然气成因来源再认识[J]. 天然气地球科学, 2019, 30(6): 840-849.
[2] 胡自龙, 卞保力, 刘海磊, 赵龙, 卢山, 王绍清. 准噶尔盆地大井地区天然气成因、来源与成藏过程[J]. 天然气地球科学, 2019, 30(6): 850-859.
[3] 王伟锋, 张仲达. 准噶尔盆地五彩湾地区石炭系烃源岩演化及油气成藏过程[J]. 天然气地球科学, 2019, 30(4): 447-455.
[4] 胡瀚文, 张元元, 卓勤功, 贾承造, 郭召杰. 准噶尔盆地南缘下组合油气成藏过程——以齐古油田为例[J]. 天然气地球科学, 2019, 30(4): 456-467.
[5] 付爽, 庞雷, 许学龙, 曹元婷, 刘振宇, 张顺存, . 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468-477.
[6] 潘建国, 黄林军, 王国栋, 郭娟娟, 马永平, 罗昭洋. 源外远源油气藏的内涵和特征——以准噶尔盆地盆1井西富烃凹陷为例[J]. 天然气地球科学, 2019, 30(3): 312-321.
[7] 于聪, 胡国艺, 陈瑞银. 不同煤系烃源岩热解气地球化学差异及其在苏里格气田的应用[J]. 天然气地球科学, 2019, 30(1): 133-142.
[8] 高崇龙,纪友亮,靳军,王剑,任影,曾力,王道伟,张昊,李谨杰. 古隆起埋藏期沟谷残丘地貌下沉积体系及油气藏发育模式——以准噶尔盆地腹部石南地区清水河组一段为例[J]. 天然气地球科学, 2018, 29(8): 1120-1137.
[9] 裴立新,刚文哲,朱传真,刘亚洲,何文军,向宝力,董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020-1030.
[10] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[11] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[12] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[13] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[14] 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式[J]. 天然气地球科学, 2018, 29(12): 1706-1714.
[15] 杨海波, 王屿涛, 郭建辰, 何文军, 蓝文芳. 准噶尔盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1518-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[2] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[3] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[4] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[5] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[6] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .
[7] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[8] 郭克园;蔡国刚;罗海炳;王智勇;常津焕;. 辽河盆地欧利坨子地区火山岩储层特征及成藏条件[J]. 天然气地球科学, 2002, 13(3-4): 60 -66 .
[9] 杨宪彰;彭更新;雷刚林;马玉杰;黄少英;. 库车山地高陡复杂构造圈闭研究思路与方法[J]. 天然气地球科学, 2006, 17(4): 538 -542 .
[10] И Д Полякова等(俄罗斯);姜家生(译). 深层含油气潜势[J]. 天然气地球科学, 2002, 13(5-6): 38 -40 .