天然气地球科学

• 天然气开发 • 上一篇    下一篇

低渗气藏两相渗流压裂水平井温度剖面预测

罗红文1, 李海涛1, 刘会斌2, 孙涛3, 卢宇1,李颖1   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.胜利石油工程有限公司西南分公司,四川 德阳 618000;
    3.中国石油华北油田分公司工程技术研究院,河北 任丘 062550
  • 收稿日期:2018-09-06 修回日期:2018-11-01 出版日期:2019-03-10
  • 作者简介:罗红文(1990-),男,重庆人,在读博士,主要从事气藏温度动态模拟及生产动态分析研究.E-mail:rojielhw@163.com.
  • 基金资助:
    国家科技重大专项“水平井完井综合评价及抗高温防气窜水泥浆关键技术”(编号:2016ZX05021-005-009HZ);国家科技重大项目“水平井产气剖面评价与深度酸化研究”(编号:2016ZX05017005-006)联合资助

Predicting temperature profiles of fractured horizontal well with two-phase flow in low-permeability gas reservoir

Luo Hong-wen1, Li Hai-tao1, Liu Hui-bin2, Sun Tao3, Lu Yu1, Li Ying1   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China;
    2.Southwest Branch of Shengli Petroleum Engineering Co. Ltd.,Deyang 618000,China;
    3.Engineering Technology Research Institute of PetroChina Huabei Oilfield Company,Renqiu 062550,China
  • Received:2018-09-06 Revised:2018-11-01 Online:2019-03-10

摘要: 基于分布式光纤(DTS)的井下温度测试正逐渐被用于监测压裂水平井井下生产状况,但低渗气藏气水两相渗流压裂水平井的温度剖面预测和出水位置诊断仍是一个技术难题。在考虑多种微热效应的基础之上,建立了一套低渗气藏两相渗流情况下压裂水平井的耦合温度预测模型。采用建立的温度模型,分别模拟了一口低渗气藏压裂水平井在5种不同产水量分布情形下的井筒温度剖面,并分析了产水量分布对井筒温度剖面的影响规律。温度剖面预测结果表明:单相气体渗流压裂水平井裂缝位置处的温降与裂缝半长基本上成正相关、各级裂缝的温度特征值从趾端到跟端呈递减分布;而产水时,出水裂缝对应的井筒温降和温度特征值均呈现出“异常降低”现象。根据上述井筒温降和温度特征值的“异常降低”现象,分别介绍了在已知和未知裂缝半长的情况下,基于井下温度剖面测试诊断压裂水平井出水位置的方法。

关键词: 温度预测模型, 两相压裂水平井, 诊断出水位置, 低渗气藏, 温度剖面

Abstract: Temperature measurements by distributed temperature sensors(DTS) are gradually being used to monitor downhole conditions of a fractured horizontal well.However,there are still great technical problems to predict the temperature profiles and diagnose the water-exit locations quantitatively of a two-phase fractured horizontal well in low-permeability gas reservoir.In this study,considering several subtle heat effects,a coupled temperature prediction model has been developed to predict the temperature profiles of a fractured horizontal well with two-phase flow in low-permeability gas reservoir.Using the developed temperature model,the temperature profiles of a fractured horizontal well with 5 different inflow-water distributions have been simulated respectively.The influences of inflow-water distribution on the wellbore temperature profiles have been analyzed as well.The predicted wellbore temperature profiles indicate that,as for a single-phase fractured horizontal well,the temperature drop at the fracture locations is positively related to the fracture half-length and the temperature characteristic value of each fracture decreases in sequence from the toe to the heel.As for a fractured horizontal well with water production,both of the temperature drop and temperature characteristic value of the particular fracture with producing water presents a phenomenon of “abnormal reduction”.Based on the aforementioned “abnormal reduction” of the temperature drop and the temperature characteristic value,two effective methods have been proposed to diagnose water-exit locations of a fractured horizontal well with known/unknown fracture half-length respectively on the basis of downhole temperature measurements.

Key words: Temperature prediction model, Two-phase fractured horizontal well, Diagnose water-exit locations, Low-permeability gas reservoir, Temperature profiles

中图分类号: 

  • TE33.2
[1]Sookprasong P A,Gill C C,Hurt R S.Lessons Learned from DAS and DTS in Multicluster Multistage Horizontal Well Fracturing:Interpretation of Hydraulic Fracture Initiation and Propagation through Diagnostics[C].SPE 170512,2014.
[2]Gustavo A U C,Huckabee P T,Molenaar M M,et al.Perforation Cluster Efficiency of Cemented Plug and Perf Limited Entry Completions;Insights from Fiber Optics Diagnostics[C].SPE 179124,2016.
[3]Zhang S,Zhu D.Inversion of Downhole Temperature Measurements in Multistage Fracture Stimulation in Horizontal Wells[C].SPE 187322,2017.
[4]Ramey H J J.Wellbore heat transmission[J].Journal of Petroleum Technology,1962,14(4):427-435.
[5]Kabir C S,Hasan A R,Jordan D L,et al.A wellbore/reservoir simulator for testing gas wells in high-temperature reservoirs[J].Spe Formation Evaluation,1996,11(2):128-134.
[6]Hasan A R,Kabir C S.A spects of wellbore heat transfer during two-phase flow[J].Spe Production & Facilities,1994,9(3):211-216.
[7]Zhong Haiquan,Liu Tong,Li Yingchuan,et al.A simplified model to predict wellbore fluid temperature in consideration of unsteady state heat transfer in formation[J].Lithologic Reservoirs,2012,24(4):108-110.
钟海全,刘通,李颖川,等.考虑地层非稳态传热的井筒流体温度预测简化模型.[J].岩性油气藏,2012,24(4):108-110.
[8]Yoshika K,Zhu D,Hill A D,et al.Prediction of temperature changes caused by water or gas entry into a horizontal well[J].SPE Production & Operations,2007,22(4):425-433.
[9]Yoshika K.Detection of Water or Gas Entry Into Horizontal Wells by Using Permanent Downhole Monitoring Systems[D].Texas:Texas A & M University,2007:54-72.
[10]Yoshika K,Zhu D,Hill A D.A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells[J].SPE Production & Operations, 2009,24(4):510-521.
[11]Li Z,Zhu D.Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for water drive reservoir[J].SPE Production & Operations,2010,25(3):296-304.
[12]Zhu S Y,Li H T,Wang Y Q.Analysis of temperature behavior in the horizontal well based on temperature modeling and distributed temperature sensing[J].Petroleum Science and Technology,2016,34(20):1678-1684.
[13]Zhu Shiyan.Theoretical Study on the Interpretation of Inflow Profile Based on the Distributed Optical Fiber Temperature Sensing[D].Chengdu:Southwest Petroleum University,2016:67-121.
朱世琰.基于分布式光纤温度测试的水平井产出剖面解释理论研究[D].成都:西南石油大学,2016:67-121.
[14]Yoshida N,Hill A D.Comprehensive Modeling of Downhole Temperature in a Horizontal Well with Multiple Fractures[R].Yoshida N:SPE,2016.
[15]Cai Junjun.Diagnosis of Multiple Fracture Stimulation in Horizontal Wells by Downhole Temperature Measurements[D].Chengdu:Southwest Petroleum University,2016:44-65.
蔡珺君.水平井井筒温度预测及解释模型研究[D].成都:西南石油大学,2016:44-65.
[16]Luo H W,Li H T,Li Y H,et al.Investigation of temperature behavior for multi-fractured horizontal well in low-permeability gas reservoir[J].International Journal of Heat and Mass Transfer, 2018,127:375-395.
[17]Kong Xiangyan.Advanced Fluid Mechanics[M].Hefei:Press of University of Science and Technology of China,2010:29-38.
孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010:29-38.
[18]Li Shilun.Natural Gas Engineering[M]:Beijing:Petroleum Industry Press,2008:33-58.
李士伦.天然气工程[M].北京:石油出版社,2008:33-58.
[19]He Gengsheng,Tang Hai.Physics of Petroleum Reservoirs[M].Beijing:Petroleum Industry Press of China,2011:92-110.
何更生,唐海.油层物理[M].北京:石油工业出版社,2011:92-110.
[20]Ma Xinfang,Fan Fengling,Zhang Shouliang.Fracture parameter optimization of horizontal well fracturing in low permeability gas reservoir[J].Natural Gas Industry,2005,25(9):61-63.
马新仿,樊凤玲,张守良.低渗气藏水平井压裂裂缝参数优化[J].天然气工业,2005,25(9):61-63.
[21]Zhang Jiqiang,Li Xiaoping,Yuan Lin,et al.Influence of non-Darcy flow on deliverability of gas-water producing horizontal well in low permeability gas reservoirs[J].Lithologic Reservoirs,2014,26(6):120-125.
张芨强,李晓平,袁淋,等.非达西渗流对低渗透气藏气水同产水平井产能的影响[J].岩性油气藏,2014;26(6):120-125.
[22]Qu Zhanqing,Huang Desheng,Li  Xiaolong,et al.Research and application of fracture parameter optimization of fractured horizontal well in low permeability gas reservoir[J].Fault-Block Oil & Gas Field,2014,21(4):486-491.
曲占庆,黄德胜,李小龙,等.低渗气藏压裂水平井裂缝参数优化研究与应用[J].断块油气田,2014,21(4):486-491.
[23]Yan Wende.Improvement of the Mathematical Model of Gas-water Two-phase Flow in Low-permeability Gas Reservoir and Its Application in Numerical Simulation[D].Chengdu:Southwest Petroleum University,2005:43-49.
严文德.低渗透气藏气—水两相渗流数学模型改进及数值模拟应用研究[D].成都:西南石油学院,2005:43-49.
[24]Yuan Lin,Li Xiaoping,Liu Jianjun.Productivity calculation method of fractured horizontal wells with gas-water two-phase in low permeability gas reservoirs[J].Lithologic Reservoirs,2016,28(4):88-94.
袁淋,李晓平,刘建军.低渗透气藏气水同产压裂水平井产能计算方法[J].岩性油气藏,2016,28(4):88-94.
[25]Bird R B,Stewart W E,Lightfoot E N,et al.Transport Phenomena[J].John Wiley & Sons,1960,28(2):338-359.
[26]Cui J Y,Zhu D,Jin M.Diagnosis of production performance after multistage fracture stimulation in horizontal wells by downhole temperature measurements[J].SPE Production & Operations,2016,31(4):280-288.
[27]Oldenburg C M.Joule-Thomson cooling due to CO injection into natural gas reservoirs[J].Energy Conversion & Management,2007,48(6):1808-1815.
[1] 陈建勋, 杨胜来, 邹成, 梅青燕, 周源, 孙丽婷. 川中须家河组低渗有水气藏渗流特征及其影响因素[J]. 天然气地球科学, 2019, 30(3): 400-406.
[2] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[3] 张迎朝,徐新德,王立锋,吴杨瑜,袁冰,朱建成,何胜林,廖静. 南海北部超压低渗气藏成藏过程与成藏模式——以莺歌海盆地XF区XF13-1超压气田为例[J]. 天然气地球科学, 2015, 26(9): 1679-1688.
[4] 张建国,刘锦华,徐运动,游良容. 低渗薄层碳酸盐岩气藏水平井长度优化研究[J]. 天然气地球科学, 2015, 26(1): 180-185.
[5] 胡勇, 邵阳, 陆家亮, 张玉丰. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J]. 天然气地球科学, 2011, 22(1): 176-181.
[6] 胥洪俊;范明国;康征;常志强;张绍俊 . 考虑渗透率应力敏感的低渗气藏产能预测公式[J]. 天然气地球科学, 2008, 19(1): 145-147.
[7] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[2] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[3] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[4] 白振华,姜振学,宋岩,赵孟军,方世虎,张健. 准噶尔盆地南部霍玛吐构造带古近系紫泥泉子组储层发育特征与控制因素分析[J]. 天然气地球科学, 2013, 24(2): 273 -281 .
[5] 戴金星, 倪云燕, 黄士鹏, 廖凤蓉, 于聪, 龚德瑜, 吴伟. 煤成气研究对中国天然气工业发展的重要意义[J]. 天然气地球科学, 2014, 25(1): 1 -22 .
[6] 杨池银,于学敏,刘 岩,滑双君,姜文亚,邹磊落. 渤海湾盆地黄骅坳陷中南部煤系发育区煤成气形成条件及勘探前景[J]. 天然气地球科学, 2014, 25(1): 23 -32 .
[7] 《天然气地球科学》期封面及目次. 《天然气地球科学》2014-01期封面及目次[J]. 天然气地球科学, 2014, 25(1): 0 -2 .
[8] 徐宏杰,胡宝林,刘会虎,郑建斌,张文永,郑凯歌. 淮南煤田下二叠统山西组煤系页岩气储层特征及物性成因[J]. 天然气地球科学, 2015, 26(6): 1200 -1210 .
[9] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1 -7 .
[10] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50 -59 .