天然气地球科学

• 天然气地质学 • 上一篇    下一篇

盖层厚度对天然气封闭能力的实验分析

林潼1 ,王孝明2 ,张璐1 ,曾旭1,张帅3 ,程煜宗3   

  1. 1.中国石油勘探开发研究院,北京 100083; 2.中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒 841000; 3.中国石油华北油田公司第三采油厂地质研究所,河北 河间 062450
  • 收稿日期:2018-11-02 修回日期:2018-11-27 出版日期:2019-03-10
  • 作者简介:林潼(1980-),男,福建福州人,高级工程师,博士,主要从事天然气地质勘探与基础实验研究E-mail:lintong1980@163.com.
  • 基金资助:
    中国科学院战略性先导科技专项A类(编号:XDA14010403);中国石油股份公司科技项目(编号:2018A-0104)联合资助

Experimental analysis of the effect of caprock thickness on sealed natural gas

Lin Tong1,Wang Xiao-ming2,Zhang Lu1,Zeng Xu1,Zhang Shuai3,Cheng Yu-zong3   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China;2.Research Institute of Exploration and Development of Tarim Oil Company of PetroChina,Korla 841000,China;
    3.Geological Research Institute of the Third Oil Production Plant of Huabei Oilfield,PetroChina,Hejian 062450,China
  • Received:2018-11-02 Revised:2018-11-27 Online:2019-03-10

摘要: 盖层的封闭能力是评价油气藏保存条件的关键。然而盖层的厚度对盖层封闭能力的作用一直存在很大的争论。研究选取与塔里木盆地超深层勘探领域油气藏盖层岩性密切相关的膏岩、盐岩和白云岩样品开展岩石长度对气体突破压力影响的实验。通过标准测试法和恒压突破法相互结合、相互印证的手段来判别岩石长度的变化对突破压力值的影响。实验结果显示:气体突破均质岩样的压力值与岩样的长度相关性不明显,但长度影响了气体的突破时间;当恒压注气初始值大于样品自身的毛管压力值时,突破时间与岩样长度呈正相关性。通过对实验数据的解析认为:现行的标准测试法中每个注气点的压力保持时间过短,造成了最终测试突破压力值偏大,影响了封闭能力测试的真实性;突破压力值与均质岩样的长度无关,但受不同测试气体的影响突破压力值有所差异;从宏观上分析厚度对盖层的物性封闭能力影响不大,但是厚度对盖层的稳定性和阻止油气的扩散起到了积极作用。

关键词: 盖层厚度, 突破压力, 封闭能力, 标准测试法, 突破时间

Abstract: The caprock sealing capacity is the key to evaluate the preservation conditions of oil and gas reservoirs.And the influence of thickness on capping ability has always been controversial.In this paper,samples of gypsum,salt rock and dolomite collected in Tarim Basin are used to test the effect of sample length on gas breakthrough pressure.The standard test method and the constant pressure gas breakthrough method are used to judge the influence of the variation of sample length on the breakthrough pressure.The experimental results show that:(1)the pressure value of gas breakthrough homogenization sample has no obvious correlation with the sample length,but the length affects the gas breakthrough time;(2)when the initial constant pressure of the gas is larger than the capillary pressure of the sample itself,the breakthrough time is positively correlated with the sample length.Through the analysis of the experimental data,it is concluded that:(1)the constant pressure time of each point in the current breakthrough pressure test is shorter,which causes the breakthrough pressure value to be higher;(2)the breakthrough pressure is independent of the length of homogeneous sample,but affected by different test gases;(3)macroscopically,the thickness has little effect on the sealing ability of the caprock,but the thickness has a positive effect on the stability of the caprock and prevents the diffusion of oil and gas.

Key words: Caprock thickness, Breakthrough pressure, Caprock sealing capacity, Standard test method, Breakthrough time

中图分类号: 

  • TE122.2+5
[1]Lu Yanfang,Chen Zhangming,Fu Guang,et al.Research on the displacement pressure of caprock[J].Journal of Daqing Petroleum Institute,1993,17(4):1-8.
吕延防,陈章明,付广,等.盖岩排替压力研究[J].大庆石油学院学报,1993,17(4):1-8.
[2]Zhang Linye,Bao Youshu,Liu Qing,et al.Effects of hydrocarbon physical properties on caprock’s capillary sealing ability[J].Science China Earth Sciences,2010,40(1):28-33.
张林晔,包友书,刘庆,等.盖层物性封闭能力与油气流体物理性质关系探讨[J].中国科学:地球科学,2010,40(1):28-33.
[3]Lu Xiuxiang,Qu Yiqian,Yu Hongfeng,et al.Sealing capacity of carbonate cap rocks:A case study of Ordovician in northern slope of central Tarim Basin[J].Petroleum Geology & Experiment,2014,36(5):532-538.
吕修祥,屈怡倩,于红枫,等.碳酸盐岩盖层封闭性讨论——以塔里木盆地塔中北斜坡奥陶系为例[J].石油实验地质,2014,36(5):532-538.
[4]Kawaura K,Akaku K,Nakano M,et al.Examination of methods to measure capillary threshold pressures of pelitic rock samples[J].Energy Procedia,2013,37(6):5411-5418.
[5]Zhang Lu,Xie Zengye,Wang Zhihong,et al.Caprock charateristics and sealing ability evaluation of Sinian-Cambrian gas reservoirs in Gaoshiti-Moxi area,Sichuan Basin[J].Natrural Gas Geiscience,2015,26(5):796-804.
张璐,谢增业,王志宏,等.四川盆地高石梯—磨溪地区震旦系—寒武系气藏盖层特征及封闭能力评价[J].天然气地球科学,2015,26(5):796-804.
[6]Fu Guang,Hu Ming,Yu Dan.Volcanic cap rock type and evaluation of sealing gas ability:An example of Xujiaweizi Depression[J].Journal of Jilin University:Earth Science Edition,2010,40(2):237-244.
付广,胡明,于丹.火山岩盖层类型及封气能力——以松辽盆地徐家围子断陷为例[J].吉林大学学报:地球科学版,2010,40(2):237-244.
[7]Fan Ming,Chen Hongyu,Yu Lingjie,et al.Evalution standard of mudstone cap rock combining specific surface area and break through pressure[J].Petroleum Geology and Experiment,2011,33(1):87-90.
范明,陈宏宇,俞凌杰,等.比表面积与突破压力联合确定泥岩盖层评价标准[J].石油实验地质,2011,33(1):87-90.
[8]Li Shuangjian,Zhou Yan,Sun Dongsheng.Rock mechanic experiment study of evaluation on cap rock effectiveness[J].Petroleum Geology and Experiment,2013,35(5):574-578.
李双建,周雁,孙冬胜.评价盖层有效性的岩石力学实验研究[J].石油实验地质,2013,35(5):574-578.
[9]Amann-Hildenbranda A,Bertier P,Busch A,et al.Experimental investigation of the sealing capacity of generic clay-rich caprocks[J].International Journal of Greenhouse Gas Control,2013,19(4):620-641.
[10]Huang Zhilong,Hao Shisheng.A method of estimating breakthrough pressure and displacement pressure of caprock[J].Xinjiang Petroleum Geology,1994,15(2):163-166.
黄志龙,郝石生.盖层突破压力及排替压力的求取方法[J].新疆石油地质,1994,15(2):163-166.
[11]Arif M,Barifcani A,Lebedev M,et al.Structural trapping capacity of oil-wet caprock as a function of pressure,temperature and salinity[J].International Journal of Greenhouse Gas Control,2016,50(5):112-120.
[12]Krooss B M,Leythaeuser D.Diffusion of methane and ethane through the reservoir cap rock:Implications for the timing and duration of catagenesis:Reply[J].AAPG Bulletin,1997,81(1),155-161.
[13]Boulin P F,Bretonnier P,Vassil V,et al.Sealing efficiency of caprocks:Experimental investigation of entry pressure measurement methods[J].Marine and Petroleum Geology,2013,48(7):20-30.
[14]Rezaeyan A,Tabatabaei-Nejad S A,Khodapanah E,et al.A laboratory study on capillary sealing efficiency of Iranian shale and anhydrite caprocks[J].Marine and Petroleum Geology,2015,66(7):817-828.
[15]Ito D,Akaku K,Okabe T,et al.Measurement of threshold capillary pressure for seal rocks using the step-by-step approach and the residual pressure approach[J].Energy Procedia,2011,4(2):5211-5218.
[16]Schmitt M,Poffo C  M,de Lima J C,et al.Application of photoacoustic spectroscopy to characterize thermal diffusivity and porosity of caprocks[J].Engineering Geology,2017,220(2):183-195.
[17]Armitage P J,Worden R H,Faulkner D R,et al.Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies,Krechba Field,Algeria:A petrological study of a caprock to a carbon capture site[J].Marine and Petroleum Geology,2010,27(4):1395-1410.
[18]Koestler A G.Hydrocarbon Seal Quantification[M].Amsterdam:Elsevier Science,2002:51-60.
[19]Osipov V I,Sokolov V N,Eremeev V V.Clay Seals of Oil and Gas Deposits Lisse[M].Netherlands:A A  Balkema Publishers,2004:1-275.
[20]Ingram  G M,Urai J L,Naylor M  A.Sealing processes and top seal assessment[J].Norwegian Petroleum Society Special Publications,1997,7:165-174.
[21]Zieglar D L.Hydrocarbon columns,buoyancy pressures and seal efficiency:comparisons of oil and gas accumulations in California and the Rocky Mountain area[J].AAPG Bulletin,1992,76(4):501-508.
[22]Lu X X,Wang Y F,Yu H F,et al.Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation:A case study of Ordovician rocks on the northern slope of the Tazhong uplift in the Tarim Basin,western China[J].Marine & Petroleum Geology,2017,83(3):231-245.
[23]Tong Xiaoguang,Niu Jiayu.Effects of regional cap formation on oil and gas accumulation[J].Petroleum Exploration and Development,1989,16(4):1-8.
童晓光,牛嘉玉.区域盖层在油气聚集中的作用[J].石油勘探与开发,1989;16(4):1-8.
[24]Jiang Youlu.The influence of cap rocks the on accumulation and distribution of natural gas in the Bohaibay Basin[J].Geological Review,1999,45(1):26-31.
蒋有录.渤海湾盆地盖层对天然气富集的影响初探[J].地质评论,1999,45(1):26-31.
[25]Fu Guang,Zhang Faqiang,Lv Yanfang.The effect of thickness on oil and gas of mudstone cover[J].Natural Gas Geoscience,1998,9(6):20-25.
付广,张发强,吕延防.厚度在泥岩盖层封盖油气中的作用[J].天然气地球科学,1998,9(6):20-25.
[26]Lv Yanfang,Zhang Shaochen,Wang Yaming.Research of quantitative relations between sealing ability and thickness of caprock[J].Acta Petrolei Sinica,2000,21(2):27-30.
吕延防,张绍臣,王亚明.盖层封闭能力与盖层厚度的定量关系[J].石油学报,2000,21(2):27-30.
[27]Bing Bai,Guangzhong Lu,Xiaochun Li,et al.Quantitative measures for characterizing the sealing ability of caprock with pore networks in CO2 geological storage[J].Energy Procedia,2014,63(11):5435-5442.
[28]State Energy Administration.SY/T 5748-2013 Rock Gas Breakthrough Pressure Measurement Method [S].Beijing:Petroleum Industry Press,2014.
国家能源局.SY/T 5748-2013 岩石气体突破压力测定方法[S].北京:石油工业出版社,2014.
[29]Sorai M.Evaluation of geochemical impacts on caprock’s sealing performance[J].Energy Procedia,2017,114(3):3578-3581.
[30]Thomas L K,Katz D L,Tek M R.Threshold pressure phenomena in porous media[J].Society of Petroleum Engineers Journal,1968,8(2):174-184.
[31]Gao Shuai,Wei Ning,Li Xiaochun.Review of CO2 breakthrough pressure measurement methods on caprocks[J].Rock and Soil Mechanics,2015,36(9):2716-2727.
高帅,魏宁,李小春.盖岩CO2突破压测试方法综述[J].岩土力学,2015,36(9):2716-2727.
[32]Heath J E,Dewers T A,McPherson B  J O L,et al.Pore-lining phases and capillary breakthrough pressure of mudstone caprocks:Sealing efficiency of geologic CO2 storage sites[J].International Journal of Greenhouse Gas Control,2012,11(9):204-220.
[33]Liu Pei,Yu Shuiming,Wang Fuguo,et al.Cap rock effictiveness evaluation and application of marine mudstone in Enping Sag of Pearl River Mouth Basin[J].Natural Gas Geoscience,2017,28(3):452-459.
刘培,于水明,王福国,等.珠江口盆地恩平凹陷海相泥岩盖层有效性评价及应用[J].天然气地球科学,2017,28(3):452-459.

[1] 刘培,于水明,王福国,陶文芳,张庆,许新明,胡坤. 珠江口盆地恩平凹陷海相泥岩盖层有效性评价及应用[J]. 天然气地球科学, 2017, 28(3): 452-459.
[2] 龚德瑜,徐国盛,周东红,袁海锋,李建平,郭永华. 辽东湾海域天然气分布特点及其控制因素[J]. 天然气地球科学, 2013, 24(2): 388-397.
[3] 王欢, 王琪, 张功成, 郝乐伟, 马晓峰. 琼东南盆地陵水组二段泥岩盖层综合评价[J]. 天然气地球科学, 2011, 22(5): 770-777.
[4] 付广;许凤鸣;. 盖层厚度对封闭能力控制作用分析[J]. 天然气地球科学, 2003, 14(3): 186-190.
[5] 石波;付广;徐明霞;. 我国主要含油气盆地盖层封闭特征[J]. 天然气地球科学, 1999, 10(3-4): 49-53.
[6] 付广;张发强;吕延防;. 厚度在泥岩盖层封盖油气中的作用[J]. 天然气地球科学, 1998, 9(6): 20-25.
[7] 曾宪斌;. 封盖层突破时间和周期浅析[J]. 天然气地球科学, 1998, 9(1): 43-46.
[8] 黄海平; 邓宏文. 泥岩盖层的封闭性能及其影响因素[J]. 天然气地球科学, 1995, 6(2): 20-26.
[9] 付广; 姜振学; 陈章明; 吕延防. 松辽盆地三肇地区青山口组泥岩盖层的封闭特征[J]. 天然气地球科学, 1995, 6(2): 14-19.
[10] 郑德文; . 天然气毛细封闭盖层评价标准的建立[J]. 天然气地球科学, 1994, 5(3): 29-33.
[11] 85-102-06-3-4专题组. 川东地区石炭系气水分布规律与保存条件[J]. 天然气地球科学, 1994, 5(2): 36-37.
[12] 付广; 陈章明; 姜振学; . 盖层对油、气封闭能力的差异性分析[J]. 天然气地球科学, 1993, 4(1): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 文志刚;何文祥;米立军;刘逸;王根照;唐友军;. 利用盆地模拟技术评价渤东凹陷下第三系油气勘探潜力[J]. 天然气地球科学, 2004, 15(4): 379 -382 .
[3] 潘建国;郝 芳;张虎权;卫平生;张景廉. . 花岗岩和火山岩油气藏的形成及其勘探潜力[J]. 天然气地球科学, 2007, 18(3): 380 -385 .
[4] 王东旭;曾溅辉;宫秀梅;. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16(3): 329 -333 .
[5] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[6] 吴雪松, 赵仕民, 肖敦清, 苏俊青, 汪新兰, 孙伟红, 刘安元. 埕北断阶带油气成藏条件与模式研究[J]. 天然气地球科学, 2009, 20(3): 362 -371 .
[7] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[8] 高岗, 柳广弟, 黄志龙, 闵忠顺. 兴隆台油气田天然气成因与成藏特殊性分析[J]. 天然气地球科学, 2010, 21(6): 955 -960 .
[9] 王振卿,王宏斌,张虎权,李闯,张继娟. 塔中地区岩溶风化壳裂缝型储层预测技术塔中地区岩溶风化壳裂缝型储层预测技术[J]. 天然气地球科学, 2011, 22(5): 889 -893 .
[10] 邹德江, 于兴河, 梁宏斌, 洪月英, 林闻, 詹路锋. 饶阳凹陷马西地区沙三中、上亚段层序地层与沉积体系分析[J]. 天然气地球科学, 2008, 19(4): 487 -491 .