天然气地球科学

• 非常规天然气 • 上一篇    下一篇

沉积物中天然气水合物生成与分解过程的电阻率变化

陈玉凤,周雪冰,梁德青,吴能友   

  1. 1.梧州学院化学工程与资源再利用学院,广西 梧州 543000; 2.中国科学院天然气水合物重点实验室,广东 广州 510640; 3.自然资源部天然气水合物重点实验室,中国地质调查局青岛海洋地质研究所,山东 青岛 266071; 4.海洋国家实验室海洋矿产资源评价与技术探测功能实验室,山东 青岛 266071
  • 收稿日期:2018-06-14 修回日期:2018-09-06 出版日期:2018-11-10
  • 通讯作者: 吴能友(1965-),男,浙江东阳人,研究员,博士师导师,主要从事天然气水合物成藏机制和地球化学研究. E-mail:wuny@ms.giec.ac.cn.
  • 作者简介:陈玉凤(1985-),女,广西玉林人,讲师,博士,主要从事天然气水合物基础物性研究. E-mail:chenyfw@126.com.
  • 基金资助:
    国家自然科学基金项目(编号:41374149);广西自然科学基金项目(编号:2015GXNSFBA139242)联合资助

Resistivity changes of natural gas hydrate formation and dissociation in sediments

Chen Yu-feng,Zhou Xue-bing,Liang De-qing,Wu Neng-you   

  1. 1.Department of Chemical Engineering and Resource Recycling,Wuzhou University,Wuzhou 543000,China;2.Key Laboratory of Natural Gas Hydrate,Chinese Academy of Sciences,Guangzhou 510640,China;3.Key Laboratory   of Gas Hydrate, Ministry of Natural Resources,Qingdao Institute of Marine Geology,Qingdao 266071,China; 4.Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266071,China
  • Received:2018-06-14 Revised:2018-09-06 Online:2018-11-10

摘要: 测定天然气水合物在沉积物形成和分解过程中电阻率的变化对海底天然气水合物的勘探开采具有重要的意义。利用设计的水合物实验装置,以99.9%的甲烷气体—3.5%氯化钠溶液—南海沉积物为研究体系,模拟测量了温度周期变化下海底沉积物中天然气水合物形成与分解过程的电阻率。实验结果表明:当水合物在沉积物中生成时,沉积物电阻率增大。水合物初始成核时,沉积物的电阻率从4.493Ω·m减小至3.173Ω·m,随着水合物的大量形成、聚集,沉积物的电阻率增大至3.933Ω·m,最后随着松散的水合物逐渐老化致密,沉积物的电阻率逐渐减小趋于稳定至3.494Ω·m。当水合物分解时,沉积物电阻率减小。沉积物的电阻率随水合物的分解从6.763Ω·m减小到2.675Ω·m,最后趋于稳定至2.411Ω·m。温度震荡可促进沉积物中高饱和度水合物的形成,并且沉积物的电阻率随水合物饱和度增加而增大。样品的水合物饱和度从初次水合物生成时的21.80%增大到水合物再次生成时的82.17%,其电阻率从3.494Ω·m增到6.763Ω·m。

关键词: 天然气水合物, 形成与分解, 沉积物, 电阻率, 饱和度

Abstract: The electrical resistivity changes during the process of natural gas hydrate (NGH) formation and dissociation in the sediments is very important for NGH exploration in the seabed areas.In this work,the resistivity of 99.9% methane-3.5% sodium chloride solution-South China Sea sediments system was measured under cyclic temperature during NGH formation and dissociation simulating the conditions of hydrate formation in subsea sediments.The results showed that the resistivity of sediments decreased from 4.493Ω·m to 3.173Ω·m during the initial stage of hydrate growth.Then,the resistivity increased rapidly and reached a maximum value of 3.933Ω·m.It finally stabilized at 3.494Ω·m.In the hydrate dissociation process,the resistivity slowly decreased from 6.763Ω·m to 2.675Ω·m and finally stabilized at around 2.411Ω·m when the system reached equilibrium state.The temperature cycling could promote the hydrate formation in sediments.After a temperature cycle,the hydrate saturation increased from 21.8% to 82.17%  and the resistivity increased from 3.494Ω·m to 6.763Ω·m.

Key words: Natural gas hydrate, Formation and dissociation, Sediments, Resistivity, Hydrate saturation

中图分类号: 

  • TE132.2
[1]Collett T S.Energy resource potential of natural gas hydrates[J].AAPG Bulletin,2002,86(11):1971-1992.
[2]Zhang Peng,Wu Qingbai,Jiang Guanli.Effects of temperature reducing ratios on methane hydrate formation inside media above zero celsius degree[J].Natural Gas Geoscience,2009,20(6):1000-1004.
张鹏,吴青柏,蒋观利.降温速率对零度以上介质内甲烷水合物形成的影响[J].天然气地球科学,2009,20(6):1000-1004.
[3]Zhao Hongwei,Diao Shaobo,Ye Yuguang,et al.Technique of detecting impedance of hydrate in porous medium[J].Marine Geology & Quaternary Geology,2005,25(1):137-142.
赵洪伟,刁少波,业渝光,等.多孔介质中水合物阻抗探测技术[J].海洋地质与第四纪地质,2005,25(1):137-142.
[4]Zhang Youxue.Methane escape from gas hydrate systems in marine environment,and methane-driven oceanic eruptions[J].Geophysical Research Letters,2003,30(7):325-348.
[5]Chuvilin E M,Ebinuma T,Kamata Y,et al.Effects of temperature cycling on the phase transition of water gas-saturated sediments[J].Canadian Journal of Physics,2003,81:343-350.
[6]Gabitto J F,Tsouris C.Physical properties of gas hydrates:A Review[J].Journal of Thermodynamics,2010,2010:1-12.
[7]Collett T S,Ladd J.Detection of gas hydrate with downhole logs and assessment of gas hydrate Concentrations(saturations) and gas volumes on the Blake Ridge with electrical resistivity log data[C]//Paul C K,Matsumoto R,Wallace P J,et al.Proceedings of the Ocean Drilling Program,Leg 164,Scientific Results.College Station,Texas:Texas A  &  M Universit
y(Ocean Drilling Program),2000:179-191.
[8]Hyndman R D,Yuan T,Moran K.The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data[J].Earth and Planetary Science Letters,1999,172:167-177.
[9]Wang Xiujuan,Wu Shiguo,Lee M,et al.Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area,South China Sea[J].Marine & Petroleum Geology,2011,28(9):1625-1633.
[10]Wang Xiujuan,Wu Shiguo,Liu Xuewei,et al.Estimation of gas hydrate saturation based on resistivity logging and analysis of estimation error[J].Geoscience,2010,24(5):993-999.
王秀娟,吴时国,刘学伟,等.基于电阻率测井的天然气水合物饱和度估算及估算精度分析[J].现代地质,2010,24(5):993-999.
[11]Tzirita A.A Study of Electrical and Thermal Properties and Their Use to Detect Natural Gas Hydrates in Ocean Sediments[D].Texas:Texas A & M University,1992:50-66.
[12]Xing Lanchang,Chen Qiang,Liu Changling.Investigation of formation and dissociation processes of tetrahydrofuran hydrate based on electrochemical impedance spectroscopy[J].Rock and Mineral Analysis,2015,34(6):704-711.
邢兰昌,陈强,刘昌岭.基于电化学阻抗谱测试方法研究四氢呋喃水合物的生成和分解过程[J].岩矿测试,2015,34(6):704-711.
[13]Zatsepina O Y,Buffett B A.Nucleation of CO2-hydrate in a porous medium[J].Fluid Phase Equilibria,2002,200(2):263-275.
[14]Zatsepina O Y,Buffett B A.Experimental study of the stability of CO2-hydrate in a porous medium[J].Fluid Phase Equilibria,2001,192(1/2):85-102.
[15]Chen Qiang,Ye Yuguang,Meng Qingguo,et al.Simulation experiment of the relationship between CO2 hydrate saturation and resistance in porous media[J].Natural Gas Geoscience,2009,20(2):249-253.
[JP3]陈强,业渝光,孟庆国,等.多孔介质中CO2水合物饱和度与阻抗关系模拟实验研究[J].天然气地球科学,2009,20(2):249-253.
[16]Spangenberg E,Kulenkampff J.Influence of methane hydrate content on electrical sediment properties[J].Geophysical Research Letters,2006,33(24):243-251.
[17]Liu Yongjun.Experimental Research on Simulated Natural Gas Hydate Bearing Sediments[D].Qingdao:China University of Petroleum,2008:45-57.
刘永军.天然气水合物储层物性模拟实验研究[D].青岛:中国石油大学,2008:45-57.
[18]Bai Yunfeng.Research on the Resistivity Measurement Method of Gas Hydrate[D].Qingdao:China University of Petroleum,2009:45-49.
白云凤.天然气水合物电阻率测量方法的研究[D].青岛:中国石油大学,2009:45-49.
[19]Li Shuxia,Xia Xiran,Xuan Jian,et al.Resistivity in formation and decomposition of natural gas hydrate in porous medium[J].Chinese Journal of Chemical Engineering,2010,18(1):39-42.
[20]Wang Yingme,Wu Qingbai,Pu Yibin,et al.Effect of temperature gradient on process of methane hydrate formation-dissociation and its resistivity changes in coarse sand[J].Natural Gas Geoscience,2012,23(1):19-25.
王英梅,吴青柏,蒲毅彬,等.温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J].天然气地球科学,2012,23(1):19-25.
[21]Chen Yufeng,Li Dongliang,Liang Deqing,et al.Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea[J].Acta Petrolei Sinca,2013,34(3):507-512.
陈玉凤,李栋梁,梁德青,等.南海沉积物水合物饱和度与电阻率的关系实验研究[J].石油学报,2013,34(3):507-512.
[22]Chen Yufeng,Li Dongliang,Liang Deqing,et al.Resistivity measurement on the marine sediment containing natural gas hydrate[J].Process in Geophysics,2013,28(2):1041-1047.
陈玉凤,李栋梁,梁德青,等.含天然气水合物的南海沉积物的电学特性研究[J].地球物理学进展,2013,28(2):1041-1047.
[23]Li Mingchuan,Pan shuanshi,Zhao Jinzhou.Impact of porous medium on gas hydrate[J].Geophysical Prospecting For Petroleum,2007,46(1):13-15.
李明川,樊栓狮,赵金洲.多孔介质对天然气水合物形成的影响[J].石油物探,2007,46(1):13-15.
[24]Yang Mingjun,Song Yongchen,Liu Yu.Effects of porous media and salinity on phase equilibrium of methane hydrates[J].Journal of Dalian University of Technology,2011,51(1):31-35.
杨明军,宋永臣,刘瑜.多孔介质及盐度对甲烷水合物相平衡影响[J].大连理工大学学报,2011,51(1):31-35.
[25]Zheng Yanhong.Hydratephase Equilibrium of Methane in the Aqueous Solutions of Salts and Methanol Medium[D].Beijing:Graduate University of Chinese Academy of Sciences,2002:30-34.
郑艳红.甲烷水合物在盐、醇类介质中相平衡研究[D].北京:中国科学院研究生院,2002:30-34.
[26]Chen Guangjin,Ma Qinglan,Guo Tianmin.A new hydrate model and its extended application in electrolyte containing system[J].Acta Petrolei Sinica,2000,21(1):64-70,6.
陈光进,马庆兰,郭天民.水合物模型的建立及在含盐体系中的应用[J].石油学报,2000,21(1):64-70,6.
[27]Sloan E D,Koh C A.Clathrate Hydrates of Natural Gases[M].third ed.Boca Raton:Taylor & Francis Group,2007:60-100.
[1] 范东稳, 卢振权, 刘晖, 肖睿, 王伟超, 李永红, 唐世琪. 南祁连盆地哈拉湖坳陷天然气水合物科学钻孔岩心顶空气组成及其地质意义[J]. 天然气地球科学, 2019, 30(4): 526-538.
[2] 刘杰, 杨睿, 邬黛黛, 金光荣. 基于生烃思路的微生物成因水合物资源量估算——以琼东南盆地西南深水区为例[J]. 天然气地球科学, 2019, 30(4): 539-548.
[3] 滕龙,殷启春,方朝刚,郑红军,沈雪华,朱红兵,陈基炜. 利用高密度电阻率法预测第四系浅层生物气——以江苏省南通地区为例[J]. 天然气地球科学, 2018, 29(5): 719-728.
[4] 杨森, 吴时国, 王吉亮, 秦永鹏. 基于机器学习方法的天然气水合物稳定带厚度计算[J]. 天然气地球科学, 2018, 29(11): 1679-1690.
[5] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[6] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[7] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[8] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[9] 何胜林,张海荣,杨冬,吴一雄,吴进波. 高温高压条件下不同气体组分储层岩电实验及应用[J]. 天然气地球科学, 2017, 28(4): 575-581.
[10] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[11] 李彦龙,刘昌岭,刘乐乐,黄萌,孟庆国. 含水合物松散沉积物三轴试验及应变关系模型[J]. 天然气地球科学, 2017, 28(3): 383-390.
[12] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[13] 陶士振, 高晓辉, 李昌伟, 曾溅辉, 张响响, 杨春, 张婧雅, 公言杰. 煤系致密砂岩气渗流机理实验模拟研究——以四川盆地上三叠统须家河组煤系致密砂岩气为例[J]. 天然气地球科学, 2016, 27(7): 1143-1152.
[14] 韩文学,陶士振,姚泾利,麻伟娇. 鄂尔多斯盆地陇东地区长7段致密储层精细表征[J]. 天然气地球科学, 2016, 27(5): 820-826.
[15] 陈金龙,黄志龙,高潇玉,刘国恒,陈常超,吕昕鹏,陈晨. 页岩含气量定量计算方法探讨——以吐哈盆地温吉桑地区中下侏罗统为例[J]. 天然气地球科学, 2016, 27(4): 727-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[2] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[3] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[4] 曾宪斌;. 封盖层突破时间和周期浅析[J]. 天然气地球科学, 1998, 9(1): 43 -46 .
[5] 张亚光;苏俊青;朱银霞;李宏军;. 千米桥潜山凝析气藏地质特征[J]. 天然气地球科学, 2003, 14(4): 264 -266 .
[6] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[7] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[8] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[9] 张雷, 刘招君, 杜江峰, 杨婷, 侯伟. 沾河断陷下白垩统淘淇河组层序地层格架及有利生储盖组合[J]. 天然气地球科学, 2010, 21(1): 100 -106 .
[10] 黄文明, 刘树根, 王国芝, 张长俊, 孙玮, 马文辛. 四川盆地下古生界油气地质条件及气藏特征[J]. 天然气地球科学, 2011, 22(3): 465 -476 .