天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于扩展有限元的水力压裂缝间干扰及裂缝形态分析

徐加祥,丁云宏,杨立峰,王臻,刘哲,高睿   

  1. 1.中国石油勘探开发研究院压裂酸化技术服务中心,河北 廊坊 065007;
    2.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2018-05-08 修回日期:2018-07-28 出版日期:2018-09-10 发布日期:2018-09-10
  • 作者简介:徐加祥(1991-),男,山东泰安人,博士研究生,主要从事油气藏增产改造技术研究.E-mail:shigong101121@163.com.
  • 基金资助:

    国家科技重大专项“致密油储层高效体积改造技术”(编号:2016ZX05046004)资助.

Analysis of stress interference and geometry of hydraulic fractures based on the extended finite element method

Xu Jia-xiang,Ding Yun-hong,Yang Li-feng,Wang Zhen,Liu Zhe,Gao Rui   

  1. 1.Fracturing and Acidification Service Center of Research Institute of Petroleum Exploration & Development,PetroChina,Langfang 065007,China;
    2.Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083,China
  • Received:2018-05-08 Revised:2018-07-28 Online:2018-09-10 Published:2018-09-10

摘要: 为了研究水平井分段多簇压裂裂缝扩展过程中缝间干扰及其对裂缝形态的影响,在考虑裂缝流和压裂液滤失的情况下,利用扩展有限元方法,分别对不同裂缝间距、不同位置组合的裂缝在同时和分时压裂过程中,水平主应力、裂缝长度、加砂前裂缝宽度以及裂缝延伸方向的变化进行数值模拟分析。通过对比发现:在裂缝扩展过程中,由压裂液作用而产生的诱导应力使得裂缝两侧椭圆型区域内的水平主应力发生转向,其单侧作用距离约为1.5倍的缝长,而裂缝尖端应力方向不受影响;2条裂缝同时起裂时,2条对称裂缝延伸方向呈“相斥型”偏转,偏转角度随着裂缝间距增大而减小,2条交错裂缝延伸方向呈“相吸型”偏转,加砂前缝宽较单一裂缝扩展时窄;分时起裂的2条裂缝,后起裂裂缝的延伸方向随着裂缝间距增加先呈现“相吸型”后出现“相斥型”,且后期裂缝的延伸缝长会受到抑制,当2条裂缝间距较近时,后起裂裂缝会严重影响前起裂裂缝的加砂前缝宽甚至会使其闭合,但其缝长会有所增加,交错裂缝两翼会出现严重的非对称扩展的情况。

关键词: 缝间干扰, 扩展有限元, 应力转向, 裂缝形态

Abstract: In order to study the stress interference between fractures and its effect on the fracture geometry during the multi-fracturing in horizontal wells,taking the fracture flow and fracturing fluid loss into consideration,variations of the horizontal in-situ stress and the length,the width before sand adding and the extension direction of fractures under different fracture spacing and positions at the same and different fracture initiation times were analyzed by numerical simulation based on extended infinite element method.Results show that the direction of the horizontal in-situ stress in the ellipsoidal regions around the fracture is changed by the induced stress caused by the fracturing fluid pressure.The unilateral distance of the effected region is approximately 1.5 times the length of the fracture.The direction of the horizontal stress on the tip of fractures is not effected.When two cracks initiated simultaneously,the extension direction of the two symmetrical cracks is “repulsive”,and the deflection angle decreases with the increase of the fracture spacing.The extension direction of two staggered fractures is “inter-attracting” and the width before sand adding is narrower than that of a single fracture.When two fractures initiate at different times,the extension direction of the latter fracture firstly is “inter-attracting” and then becomes “repulsive” with the increase of the fracture spacing and its length is inhibited by the former one.The width of the former fracture before sand adding is affected seriously by the latter one while its length becomes longer and there is a seriously asymmetrical expansion on both wings of the staggered fractures.

Key words: Fracture interference, Extended infinite element method, Stress transition, Fracture geometry

中图分类号: 

  • TE377

[1]Zou Caineng,Zhu Rukai,Wu Songtao,et al.Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173-187.
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.
[2]Qiu Zhen,Zou Caineng,Li Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects[J].Natural Gas Geoscience,2013,24(2):238-246.
邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.
[3]Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocarbons[J].Natural Gas Geoscience,2012,23(3):393-406.
赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406.
[4]Zou Caineng,Zhang Guosheng,Yang Zhi,et al.Geological concepts,characteristics,resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J].Petroleum Exploration and Development,2013,40(4):385-399.
邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399.
[5]Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.
贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.
[6]Shang Xiaosen,Ding Yunhong,Yang Lifeng,et al.Network fracturing technique in shale reservoir based on weak discontinuity and fracture interaction[J].Natural Gas Geoscience,2016,27(10):1883-1891.
尚校森,丁云宏,杨立峰,等.基于结构弱面及缝间干扰的页岩缝网压裂技术[J].天然气地球科学,2016,27(10):1883-1891.
[7]Sneddon I N.The distribution of stress in the neighbourhood of a crack in an elastic solid[J].Proceeding of the Royal Society of London Series A-Mathematical and Physical Sciences,1946,187(1009):229-260.
[8]Roussel N P,Sharma M M.Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions[C]//SPE Annual Technical Conference and Exhibition.Denver,Colorado:Society of Petroleum Engineers,2011:1-17.
[9]Zhao Jinzhou,Chen Xiyu,Liu Changyu,et al.The analysis of crack interaction in multistage horizontal fracturing[J].Natural Gas Geoscience,2015,26(3),533-538.
赵金洲,陈曦宇,刘长宇,等.水平井分段多簇压裂缝间干扰影响分析[J].天然气地球科学,2015,26(3),533-538.
[10]Li Yongming,Chen Xiyu,Zhao Jinzhou,et al.The effects of crack interaction in multi-stage horizontal fracturing[J].Journal of Southwest Petroleum University:Science & Technology Edition,2016,38(1):76-83.
李勇明,陈曦宇,赵金洲,等.水平井分段多簇压裂缝间干扰研究[J].西南石油大学学报:自然科学版,2016,38(1):76-83.
[11]Li Yongming,Wang Yanchen,Zhao Jinzhou,et al.Calculation model of kink angle in shale gas reservoirs with consideration of stress interference[J].Natural Gas Geoscience,2015,26(10):1979-1983,1998.
李勇明,王琰琛,赵金洲,等.考虑多缝应力干扰的页岩储层压裂转向角计算模型[J].天然气地球科学,2015,26(10):1979-1983,1998.
[12]Chen Zuorong.An ABAQUS implementation of the XFEM for hydraulic fracture problems[C]//ISRM International Conference for Effective and Sustainable Hydraulic Fracturing.Brisbane,Australia:International Society for Rock Mechanics,2013:725-739.
[13]Zeng Qingdong,Yao Jun.Numerical simulation of shale hydraulic fracturing based on the extended finite element method[J].Applied Mathematics and Mechanics,2014,35(11):1239-1248.
曾青冬,姚军.基于扩展有限元的页岩水力压裂数值模拟[J].应用数学与力学,2014,35(11):1239-1248.
[14]Sepehri J,Soliman M Y,Morse S M.Application of extended finite element method to simulate hydraulic fracture propagation from oriented perforations[C]//SPE Hydraulic Fracturing Technology Conference.Texas,USA:Society of Petroleum Engineers,2015:1-15.
[15]Gong Diguang,Qu Zhanqing,Li Jianxiong,et al.Extend finite element simulation of hydraulic fracture based on ABAQUS platform[J].Rock and Soil Mechanics,2016,37(5):1512-1520.
龚迪光,曲占庆,李建雄,等.基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J].岩土力学,2016,37(5):1512-1520.
[16]Bars M L,Worster M G.Interfacial conditions between a pure uid and a porous medium:Implications for binary alloy solidification[J].Journal of Fluid Mechanics,2006,550:149-173.
[17]Qu Zhanqing,Li Xiaolong,Li Jianxiong,et al.Crack morphology of multiple radial well fracturing based on extended finite element method[J].Journal of China University of Petroleum:Edition of Natural Science,2018,42(1):73-81.
曲占庆,李小龙,李建雄,等.基于扩展有限元法的多径向井压裂裂缝形态[J].中国石油大学学报:自然科学版,2018,42(1):73-81.
[18]Zhuang Zhuo,Liu Zhanli,Cheng Binbin,et al.The Extend Finite Element Method[M].Beijing:Tsinghua University Press,2012:35-36.
庄茁,柳占立,成斌斌,等.扩张有限单元法[M].北京:清华大学出版社,2012:35-36.
[19]Guo L L,Chen Z F,Luo J R,et al.A review of the extended finite element method and its applications[J].Chinese Quarterly of Mechanics,2011,2(4):612-625.
[20]Feng Yanjun,Kang Hongpu.Hydraulic fracturing initiation and propagation[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(2):3169-3179.
冯彦军,康红普.水力压裂起裂与扩展分析[J].岩石力学与工程学报,2013,32(2):3169-3179.
[21]Chang Xiaolin,Hu Chao,Ma Gang,et al.Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and application[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2004-2011.
常晓林,胡超,马刚,等.模拟岩体失效全过程的连续—非连续变形体离散元方法及应用[J].岩石力学与工程学报,2011,30(10):2004-2011.
[22]Olson J E.Multi-fracture propagation modeling:Application to hydraulic fracturing in shales and tight gas sands[C]//U.S.Rock Mechanics Symposium.San Francisco,California:American Rock Mechanics Association,2008:1-8.
[23]Hyunil J.Optimizing fracture spacing to induce complex fracture in a hydraulically fractured horizontal wellbore[C]//Americas Unconventional Resources Conference.Pittsburgh,Pennsylvania:Society of Petroleum Engineers,2012:1-14.

[1] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[2] 尚校森,丁云宏,杨立峰,卢拥军,鄢雪梅,王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[3] 赵金洲,陈曦宇,刘长宇,李勇明,李晖,曹学军. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3): 533-538.
[4] 赵金洲,尹庆,李勇明,唐志娟. 重复压裂气井热—固耦合应力场拟三维模型[J]. 天然气地球科学, 2015, 26(11): 2131-2136.
[5] 程远方,徐太双,吴百烈,李娜,袁征,孙元伟,王欣. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学, 2013, 24(1): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[3] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[4] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[5] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .
[6] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[7] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .
[8] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[9] 李广之;胡斌;袁子艳;邓天龙;. 轻烃的吸附与解吸模型[J]. 天然气地球科学, 2006, 17(4): 552 -558 .
[10] 张斌;肖中尧;吴英;卢玉红;李明和;刘永福;. 塔里木盆地东南地区若参1井天然气成因初探[J]. 天然气地球科学, 2006, 17(4): 586 -589 .