天然气地球科学

• 天然气开发 • 上一篇    下一篇

微多孔介质迂曲度与孔隙结构关系

李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.中国石油股份有限公司新疆油田公司勘探事业部,新疆 克拉玛依 834000;
    3.中国石油股份有限公司西南油气田公司工程技术研究院,四川 成都 610000
  • 收稿日期:2018-04-16 修回日期:2018-06-19 出版日期:2018-08-10 发布日期:2018-08-10
  • 通讯作者: 李闽(1962-),男,四川射洪人,教授,主要从事非常规致密页岩油气渗流机理与开发/测井解释研究. E-mail:hytlxf@126.com
  • 作者简介:李滔(1991-),男,四川南充人,博士研究生,主要从事油气渗流机理研究. E-mail:734492538@qq.com.
  • 基金资助:
    国家自然科学基金联合项目“致密气多相多尺度流动规律及跨尺度耦合渗流”(编号:U1562217);国家自然科学基金重点项目“致密气藏储层干化、提高气体渗流能力的基础研究”(编号:51534006)联合资助.
     

Study on the relationship of tortuosity with pore structure in micro-porous media

Li Tao,Li Min,Zhang Lie-hui,Tian Shan-chuan,Zhao Xiao-yu,Zheng Ling-li   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,SouthwestPetroleum University,Chengdu 610500,China;
    2. Exploration Department of Xinjiang Oilfield Company,PetroChina,Karamay 834000,China;
    3. Engineering Technology Research Institute,PetroChina Southwest Oil/Gas Field Company,Chengdu 610000,China
  • Received:2018-04-16 Revised:2018-06-19 Online:2018-08-10 Published:2018-08-10

摘要:

采用四参数随机生成(QSGS)、随机堆积和随机裂缝生成等算法,构建了各向异性、非均质性和不同孔隙形状的二维多孔介质;并改进QSGS算法,构建了二维裂缝—孔隙双重介质。结合标准反弹边界条件,运用多弛豫时间格子Boltzmann(MRT-LB)模型研究了微多孔介质迂曲度与孔隙结构的关系。结果表明:现有迂曲度模型均不适用于复杂多孔介质;多孔介质迂曲度与孔隙度、各向异性、非均质性、孔隙形状和裂缝等有关,其中孔隙度、各向异性、孔隙形状和裂缝的影响更显著;圆形孔多孔介质的迂曲度普遍大于裂缝性多孔介质,粒间孔多孔介质的迂曲度居于二者之间;裂缝开度和裂缝走向均显著影响裂缝—孔隙双重介质的迂曲度。最后,基于模拟结果,分别建立了多孔介质迂曲度与孔隙度和各向异性的关系式。该研究有助于进一步认识多孔介质迂曲度。

关键词: 迂曲度, 各向异性, 非均质性, 孔隙形状, MRT-LB模型

Abstract:

Two-dimensional anisotropy, heterogeneity and different pore shape of micro-porous media were generated by adopting the quartet structure generation set (QSGS) method, randomly distributed particles method and random fracture generation method, while the improved QSGS method was utilized to generate two-dimensional fracture-pore dual media. By applying bounce-back wall boundary condition, a multi-relaxation-time lattice Boltzmann (MRT-LB) model was adopted to simulate fluid flow in porous media for analyzing the correlation of tortuosity with pore structure in micro-porous media. The simulation results show that porosity, anisotropy, heterogeneity, pore shape and fracture all affect tortuosity, while porosity, anisotropy, pore shapeand fracture play a more significant role. The tortuosity of the circular pore media is generally greater than that of the fractured porous media, while the tortuosity of the intergranular pore media is basically in the middle. The aperture and strike of fracture significantly affect the tortuosity of fracture-pore dual media. Meanwhile, the existing tortuosity models are not suitable for complex porous media. Finally, the relations of tortuosity with anisotropy and porosity are established respectively based on the simulation results.This workis helpful to further reveal the relationshipbetweentortuosity and pore structurein micro-porous media.

Key words: Tortuosity, Anisotropy, Heterogeneity, Pore shape, MRT-LB model

中图分类号: 

  • TE31
[1]Ahmadi M M,Mohammadi S,Hayati A N.Analytical derivation of tortuosity and permeability of monosized spheres:A volume averaging approach[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2011,83(2):026312.
[2]Khabbazi A E,Hinebaugh J,Bazylak A.Determining the impact of rectangular grain aspect ratio on tortuosity-porosity correlations of two-dimensional stochastically generated porous media[J].Science Bulletin,2016,61(8):601-611.
[3]Carman P C.Permeability of saturated sands,soils and clays[J].Journal of Agricultural Science,1939,29(2):262-273.
[4]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.
[5]Wang Z Y,Jin X,Wang X Q,et al.Pore-scale geometry effects on gas permeability in shale[J].Journal of Natural Gas Science and Engineering,2016,34:948-957.
[6]Zhang Chong,Zhang Chaomo,Zhang Zhansong,et al.Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J].Natural Gas Geoscience,2016,27(2):352-358.
张冲,张超谟,张占松,等.致密气储层岩心束缚水饱和度实验对比[J].天然气地球科学,2016,27(2):352-358.
[7]Bi Mingwei,Chen Shiyue,Zhou Zhaohua,et al.Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th member of Lower Shihezi Formation in the Su 6 area of Sulige Gasfield[J].Natural Gas Geoscience,2015,26(10):1851-1861.
毕明威,陈世悦,周兆华,等.鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J].天然气地球科学,2015,26(10):1851-1861.
[8]Zhao J L,Yao J,Li A F,et al.Simulation of microscale gas flow in heterogeneous porous media based on the lattice Boltzmann method[J].Journal of Applied Physics,2016,120(8):579.
[9]Iversen N,Bo B J.Diffusion coefficients of sulfate and methane in marine sediments:Influence of porosity[J].Geochimica Et Cosmochimica Acta,1993,57(3):571-578.
[10]Comiti J,Renaud M.A new model for determining mean structure parameters of fixed beds from pressure drop measurements:Application to beds packed with parallelepipedal particles[J].Chemical Engineering Science,1989,44(7):1539-1545.
[11]Dias R,Teixeira J A,Mota M,et al.Tortuosity variation in a low density binary particulate bed[J].Separation & Purification Technology,2006,51(2):180-184.
[12]Meredith R E,Tobias C W.Conduction in Heterogeneous Systems,Advances in Electrochemistry and Electrochemical Engineering 2[M].New York:Interscience Publishers,1962.[13]Pisani L.Simple expression for the tortuosity of porous media[J].Transport in Porous Media,2011,88(2):193-203.
[14]Pisani L.A geometrical study of the tortuosity of anisotropic porous media[J].Transport in Porous Media,2016,114(1):201-211.
[15]Koponen A,Kataja M,Timonen J.Tortuous flow in porous media[J].Physical Review E,1996,54(1):406-410.
[16]Koponen A,Kataja M,Timonen J.Permeability and effective porosity of porous media[J].Physical Review E,1997,56(56):3319-3325.
[17]Ho F G,Striender W.A variational calculation of the effective surface diffusion coefficient and tortuosity[J].Chemical Engineering Science,1981,36(2):253-258.
[18]Tsai D S,Strieder W.Radiation across a spherical cavity having both specular and diffuse reflectance components[J].Chemical Engineering Science,1985,40(1):170-173.
[19]Wang J J,Chen L,Kang Q J,et al.The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow:A review[J].International Journal of Heat & Mass Transfer,2016,95:94-108.
[20]Wang M,Li Z.An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows[J].Computers & Fluids,2007,36(8):1291-1297.
[21]Lange K J,Sui P C,Djilali N.Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers[J].Journal of the Electrochemical Society,2010,157(10):B1434-B1442.
[22]Wang J J,Kang Q J,Wang Y Z,et al.Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method[J].Fuel,2017,205:232-246.
[23]Haralock R M,Shapiro L G.Computer and Robot Vision[M].Chicago:Addison-Wesley Longman Publishing Co.Inc.,1991.
[24]Pan C X,Luo L S,Miller C T.An evaluation of lattice Boltzmann schemes for porous medium flow simulation[J].Computers & Fluids,2006,35(8):898-909.
[25]Chen C,Hu D,Westacott D,et al.Nanometer-scale characterization of microscopic pores in shale kerogen by image analysis and pore-scale modeling[J].Geochemistry Geophysics Geosystems,2013,14(10):4066-4075.
[26]Guo Z L,Shi B C.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J].Chinese Physics,2002,11(4):366-374.[27]Espinoza M,Andersson M,Yuan J L,et al.Compress effects on porosity,gas-phase tortuosity,and gas permeability in a simulated PEM gas diffusion layer[J].International Journal of Energy Research,2015,39(11):1528-1536.
 
[1] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[2] 王喜鑫,侯加根,刘钰铭,窦鲁星,孙建,龚勋. 基于层次分析与模糊数学的河口坝非均质性定量表征——以王官屯油田官195断块为例[J]. 天然气地球科学, 2017, 28(12): 1914-1924.
[3] 刘卫群,王冬妮,苏强. 基于页岩储层各向异性的双重介质模型和渗流模拟[J]. 天然气地球科学, 2016, 27(8): 1374-1379.
[4] 李勇明,廖毅,赵金洲,王琰琛,彭瑀. 基于双尺度等效渗流模型的复杂碳酸盐岩蚓孔扩展形态研究[J]. 天然气地球科学, 2016, 27(1): 121-127.
[5] 白瑞婷,李治平,南珺祥,赖枫鹏,李洪,韦青. 考虑启动压力梯度的致密砂岩储层渗透率分形模型[J]. 天然气地球科学, 2016, 27(1): 142-148.
[6] 陈尚斌,秦勇,王阳,张寒,左兆喜. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455-1463.
[7] 洪峰,姜林,郝加庆,樊阳,郑永平. 油气储集层非均质性成因及含油气性分析[J]. 天然气地球科学, 2015, 26(4): 608-615.
[8] 李波,贾爱林,何东博,吕志凯,甯波,冀光. 苏里格气田强非均质性致密气藏水平井产能评价[J]. 天然气地球科学, 2015, 26(3): 539-549.
[9] 吴红烛,黄志龙,童传新,黄保家,刘平,魏国. 气水过渡带和天然气成藏圈闭闭合度下限问题讨论——以莺歌海盆地高温高压带气藏为例[J]. 天然气地球科学, 2015, 26(12): 2304-2314.
[10] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[11] 高大鹏,孙敬,韩晓红,郑金定,黄敏. 非均质气藏可动水评价及提高采收率新思路[J]. 天然气地球科学, 2014, 25(9): 1437-1443.
[12] 赵洪,罗晓容,肖中尧,张宝收,赵风云,雷裕红,赵健,胡才志. 塔里木盆地哈得逊油田东河砂岩隔夹层特征及其石油地质意义[J]. 天然气地球科学, 2014, 25(6): 824-833.
[13] 陈启艳,高建虎,董雪华,蒋春玲. 碳酸盐岩地层横波速度预测[J]. 天然气地球科学, 2014, 25(6): 921-927.
[14] 张庄, 史洪亮, 杨克明, 魏力民, 周维娜, 葛忠伟. 试论致密砂岩气藏中的夹层控气作用——以川西大邑须家河组气藏为例[J]. 天然气地球科学, 2012, 23(3): 493-500.
[15] 张军舵,杨午阳,王艳香,赵万金,王宇超. 转换波地震资料处理方法研究与应用[J]. 天然气地球科学, 2011, 22(6): 1116-1122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 武芳芳 朱光有 王慧 张水昌 金强 顾乔元 张宝收 苏劲. 塔里木盆地塔中12构造复式油气运聚与成藏研究[J]. 天然气地球科学, 2009, 20(1): 76 -85 .
[2] 张明峰,邹红亮,冯备战,张小军,吴陈君,陈 茹,妥进才. 苯基取代多苯环化合物的成熟度指示意义——以柴达木盆地西部古近系—新近系烃源岩为例[J]. 天然气地球科学, 2013, 24(5): 975 -981 .
[3] 盛秀杰,金之钧,王义刚,肖晔. 融合不同地质场景假设的油气区带及圈闭资源量计算方法[J]. 天然气地球科学, 2015, 26(3): 456 -465 .
[4] 张瑜,闫建萍,贾祥娟,李艳芳,邵德勇,于萍,张同伟. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学, 2015, 26(9): 1755 -1762 .
[5] 肖传桃,肖云鹏,宋振宇,黄云飞,董曼. 湖北松滋地区下奥陶统生物扰动型凝块石的发现及其成因探讨[J]. 天然气地球科学, 2018, 29(8): 1078 -1084 .