天然气地球科学

• 非常规天然气 • 上一篇    下一篇

重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征

王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞   

  1. 1.中国地质调查局地学文献中心,北京 100083;
    2.中国石油大学油气资源与探测国家重点实验室,北京  102249;
    3.中国石化上海海洋油气分公司,上海  200120;4.中国石化西南油气田,四川 成都 610000
  • 收稿日期:2018-04-12 修回日期:2018-06-24 出版日期:2018-07-10 发布日期:2018-07-10
  • 作者简介:王朋飞(1988-),男,山东聊城人,助理研究员,博士,主要从事非常规油气成藏与地质评价及能源信息研究.E-mail:wpfupc725@outlook.com.
  • 基金资助:
    中国地质调查局地学情报综合研究与产品研发项目(编号:121201015000172602);南方页岩气基础地质调查工程项目(编号:12120114046701)联合资助.
     

Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing

Wang Peng-fei,Jiang Zhen-xue,Lü Peng,Jin Can,Li Xin,Huang Pu   

  1. 1.Geoscience Documentation Center,CGS,Beijing 100083,China;
    2.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China;
    3.Sinopec Shanghai Offshore Petroleum Company,Shanghai 200120,China;4.Sinopec Oil & Gas Field Southwest Branch,Chengdu 610000,China
  • Received:2018-04-12 Revised:2018-06-24 Online:2018-07-10 Published:2018-07-10

摘要: 针对重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组2套海相页岩已经进行了规模勘探与开发,但2套页岩的产气效果却存在较大差别,其中龙马溪组页岩产气量大,稳产时间长;牛蹄塘组页岩产气量小,稳产时间短。因此,以重庆周缘龙马溪组和牛蹄塘组页岩样品为研究对象,通过有机碳含量测试、全岩XRD分析、等效镜质体反射率测试、聚焦离子束扫描电子显微镜(FIB-SEM)及聚焦离子束氦离子显微镜(FIB-HIM)观察,结合地层埋藏史及生烃演化史分析,对2套页岩的有机质孔隙及演化特征进行了研究。研究结果表明:2套页岩的有机质孔隙发育特征存在较大差别。龙马溪组页岩固体干酪根内有机质孔隙数量少、孔径小,连通性差;但龙马溪组页岩迁移有机质内部孔隙数量多、孔径大,连通性好;牛蹄塘组页岩固体干酪根内不发育孔隙,而迁移有机质内部孔隙数量少、孔径小及连通性差;影响2套页岩有机质孔隙发育的最重要的因素是热演化程度。牛蹄塘组页岩固体干酪根孔隙由于过度演化而大量消失,只保留少量的迁移有机质孔隙;而龙马溪组页岩由于热演化程度适中,发育大量的迁移有机质孔隙,固体干酪根只保留少量孔隙。适宜的热演化程度能够保证页岩有机质孔隙的大量发育期和生烃高峰期的耦合,为页岩气生成之后第一时间得到有效赋存提供必要的有机质孔隙。针对中国南方下寒武统牛蹄塘组页岩气的勘探开发应重点寻找热演化程度适中(2.0%O<3.0%),即分布在古隆起边缘的页岩分布区。

关键词: 重庆周缘, 龙马溪组, 牛蹄塘组, 固体干酪根, 迁移有机质, 有机质孔隙

Abstract: In the periphery of Chongqing,two sets of marine shale gas have been carried out for the exploration and development.However,there are significant differences in the gas production of the two formations of shale,in which the shale production of the Longmaxi Formation is large and the stable production time is long.The production of the Niutitang shale is small and the stable production period is short.For the samples from the Longmaxi and Niutitang Formations in Chongqing,and XRD analysis,equivalent vitrinite reflectance test,focused ion beam scanning electron microscope and focused ion beam helium ion microscope were used to study the organic matter pores development,and stratigraphic burial and evolution history were also studied to clarify evolution of organic matter pores.The results show that there are significant differences in the organic pore development characteristics of the two formations shale.The solid kerogen of the Longmaxi shale has a small number of pores,a small pore size and poor connectivity.However,the migrated organic matter in the Longmaxi shale has a large number of pores,large pore size,and better connectivity.There is no pore in the solid kerogen of Niutitang shale,but there are a few pores with small pore size and poor connectivity in the migrated organic matter.The most important factor affecting the organic matter pore development of the two formations shale is the degree of thermal evolution.Organic matter pores of kerogen in the Niutitang shale has disappeared due to excessive evolution,leaving only a small amount of pores in migrated organic matter.However,due to the moderate thermal evolution of the Longmaxi shale,a large number of migrated organic matter pores are developed,and solid kerogen only retains a small amount of pores.The optimum thermal evolution degree can ensure the best match between the massive development period of organic matter pores and the hydrocarbon generation peak,and provide necessary storage space for shale gas.For the exploration and development of shale gas of Niutitang shale,we should focus on finding the shale with moderate degree of thermal evolution (2.0%O<3.0%) that distributed around in ancient uplift.

Key words: Chongqing periphery, Longmaxi shale, Niutitang shale, Solid kerogen, Migrated organic matter, Organic matter pores

中图分类号: 

  • TE122.2  

[1]Zhao Wenzhi,Li Jianzhong,Yang Tao,et al.Geological difference and its significance of marine shale gases in south China[J].Petroleum Exploration and Development,2016,43(4):499-510.
赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发,2016,43(4):499-510.
[2]Guo Xusheng,Hu Dongfeng,Wei Zhihong,et al.Discovery and exploration of Fuling shale gas field[J].China Petroleum Exploration,2014,88(9):1728-1740.
郭旭升,胡东风,魏志红,等.涪陵页岩气田的发现与勘探认识[J].中国石油勘探,2014,88(9):1728-1740.
[3]Guo Xusheng.Rules of “two-factor” enrichiment for marine shale gas in southern China:Understanding of the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2014,88(7):1209-1218.
郭旭升.南方海相页岩气“二元富集”规律—四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报,2014,88(7):1209-1218.
[4]Nie Haikuan,Jin Zhijun,Bian Ruikang,et al.The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its surrounding[J].Acta Petrolei Sinica,2016,37(5):557-571.
聂海宽,金之钧,边瑞康,等.四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源—盖控藏”富集[J].石油学报,2016,37(5):557-571.
[5]He Zhiliang,Hu Zongquan,Nie Haikuan,et al.Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-trans formation evolution sequence[J].Nature Gas Geoscience,2017,28(5):724-733.
何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学,2017,28(5):724-733.
[6]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[7]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[8]Loucks R G,Reed R M.Scanning-electron-microscope petrographic Evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J].Gulf Coast Association of Geological Societies Journal,2014,3:51-60.
[9]Slatt R M,O’Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[10]Tian H,Pan L,Zhang T,et al.Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province,Southwestern China[J].Marine and Petroleum Geology,2015,62:28-43.
[11]Milliken K L,Rudnicki M,Awwiller D N,et al.Organic matterehosted pore system,Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
[12]Guo X,Shen Y,He S.Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis:A case study for a lacustrine shale reservoir in the Triassic Chang 7 member,Ordos Basin,China[J].Journal of Natural Gas Science and Engineering,2015,27:1630-1640.
[13]Zhu Tong,Yu Lingjie,Wang Feng.Comparative analysis of the storage conditions and development strategies of the marine and lacustrine shale gas from the Sichuan Basin,China[J].Natural Gas Geoscience,2017,28(4):633-641.
朱彤,俞凌杰,王烽.四川盆地海相、湖相页岩气形成条件对比及开发策略[J].天然气地球科学,2017,28(4):633-641.
[14]Jiao K,Yao S,Liu C,et al.The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing Fesem-Fib and image processing:An example from the Lower Silurian Longmaxi shale,Upper Yangtze region,China[J].International Journal of Coal Geology,2014,128:1-11.
[15]Zhang Tingshan,He Yingjie,Yang Yang,et al.Molecular simulation of shale gas adsorption in organic-matter nanopores[J].Natural Gas Geoscience,2017,28(1):146-155.
张廷山,何映颉,杨洋,等.有机质纳米孔隙吸附页岩气的分子模拟[J].天然气地球科学,2017,28(1):146-155.
[16]Ma Y,Zhong N,Li D,et al.Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the Upper Yangtze area,China:A possible microscopic mechanism for gas preservation[J].International Journal of Coal Geology, 2015,137:38-54.
[17]Wang P,Jiang Z,Ji W,et al.Heterogeneity of intergranular,intraparticle and organic pores in Longmaxi shale in Sichuan Basin,south China:Evidence from SEM digital images and fractal and multifractal geometries[J].Marine and Petroleum Geology,2016,72:122-138.
[18]Ji Wenming,Song Yan,Jiang Zhenxue,et al.Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation,southeastern Sichuan Basin[J].Acta Petrolei Sinica,2016,37(2):182-195.
纪文明,宋岩,姜振学,等.四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J].石油学报,2016,37(2):182-195.
[19]Zhao Wenzhi,Wang Zhaoyun,Wang Hongjun,et al.Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J].Petroleum Exploration and Development,2011,38(2):129-135.
赵文智,王兆云,王红军,等.再论有机质“接力成气”的内涵与意义[J].石油勘探与开发,2011,38(2):129-135.
[20]Zhao Wenzhi,Wang Zhaoyun,Wang Dongliang,et al.Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J].Petroleum Exploration and Development,2015,42(4):401-413.
赵文智,王兆云,王东良,等.分散液态烃的成藏地位与意义[J].石油勘探与开发,2015,42(4):401-413.
[21]Wang Xiangzeng,Zhang Lixia,Lei Yuhong,et al.Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:A case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation,southeastern Ordos Basin[J].Acta Petrolei Sinica,2018,39(2):141-151.
王香增,张丽霞,雷裕红,等.低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长 7 油层组页岩为例[J].石油学报,2018,39(2):141-151.
[22]Liu Shugen,Deng Bin,Zhong Yong,et al.Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J].Earth Science Frontiers,2016,23(1):11-28.
刘树根,邓宾,钟勇,等.四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J].地学前缘,2016,23(1):11-28.
[23]Nie Haikuan,Jin Zhijun,Bian Ruikang,et al.The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J].Acta Petrolei Sinica,2016,37(5):557-571.
聂海宽,金之钧,边瑞康,等.四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源—盖控藏”富集[J].石油学报,2016.37(5):557-571.
[24]Ma Zhongliang,Zheng Lunju,Xu Xuhui,et al.Thermal simulation experiment on the formation and  evolution of organic pores in organic-rich shale[J].Acta Petrolei Sinica,2017,38(1):23-30.
马中良,郑伦举,徐旭辉,等.富有机质页岩有机孔隙形成与演化的热模拟实验[J].石油学报,2017,38(1):23-30.
[25]Zhao Jianhua,Jin Zhijun,Jin Zhenkui,et al.Petrographic methods to distinguish organic matter type in shale[J].Petroleum Geology & Experiment,2016,38(4):514-520.
赵建华,金之钧,金振奎,等.岩石学方法区分页岩中有机质类型[J].石油实验地质,2016,38(4):514-520.
[26]Liu Zhongbao,Feng Dongjun,Gao Bo,et al.Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area[J].Natural Gas Geoscience,2017,28(7):1096-1107.
刘忠宝,冯动军,高波,等.上扬子地区下寒武统高演化页岩微观孔隙特征[J].天然气地球科学,2017,28(7):1096-1107.
[27]Zhai Gangyi,Bao Shujing,Wang Yufang,et al.Reservoir accumulation model at the edge of Palaeohigh and significant discovery of shale gas in Yichang area,Hubei Province[J].Acta Geoscientica Sinica,2017,38(4):441-447.
翟刚毅,包书景,王玉芳,等.古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J].地球学报,2017,38(4):441-447.
[28]Wang Yufang,Zhai Gangyi,Bao Shujing,et al.Evaluation of Sinian Doushantuo Formation shale gas content and fracturing property of Eyangye 1 Well in Hubei Province[J].China Mining Magazine,2017,26(6):166-172.
王玉芳,翟刚毅,包书景,等.鄂阳页1井陡山沱组页岩储层含气性及可压性评价[J].中国矿业,2017,26(6):166-172.

[1] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[2] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[3] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[4] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[5] 邓宇, 曾庆才, 陈胜, 管全中, 郭晓龙, 贺佩. 四川盆地威远地区五峰组—龙马溪组页岩TOC含量地震定量预测方法及应用[J]. 天然气地球科学, 2019, 30(3): 414-422.
[6] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[7] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[8] 赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[9] 夏鹏, 王甘露, 曾凡桂, 牟雨亮, 张昊天, 刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[10] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[11] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[12] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[13] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
[14] 邹贤军, 陈亚琳. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 2018, 29(12): 1775-1780.
[15] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[2] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[3] 贾成业;夏斌;王核;张胜利;. 东海陆架盆地丽水凹陷构造演化及油气地质分析[J]. 天然气地球科学, 2006, 17(3): 397 -401 .
[4] 胡明毅;李士祥;魏国齐;杨威;林世国;. 川西前陆盆地上三叠统须家河组致密砂岩储层评价[J]. 天然气地球科学, 2006, 17(4): 456 -458 .
[5] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[6] И Д Полякова等(俄罗斯);姜家生(译). 深层含油气潜势[J]. 天然气地球科学, 2002, 13(5-6): 38 -40 .
[7] 刘宏,蔡正旗,郑超, 张荣义. 大池干井构造带嘉二~2储层特征及有利区预测[J]. 天然气地球科学, 2004, 15(6): 614 -618 .
[8] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[9] 田继军, 陈振林, 王雪莲, 田建锋. 伏龙泉气田成藏规律分析[J]. 天然气地球科学, 2004, 15(5): 508 -810 .
[10] 陈敬义;张美荣;高日胜;钟政权;宋守德;朱淑慧;. 文西断裂带构造特征与油气运聚关系[J]. 天然气地球科学, 2004, 15(3): 272 -275 .