天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩储层有效应力特征及其对产能的影响

朱维耀,马东旭   

  1. 北京科技大学土木与资源工程学院,北京 100083
  • 收稿日期:2017-12-14 修回日期:2018-05-18 出版日期:2018-06-10 发布日期:2018-06-10
  • 作者简介:朱维耀(1960-),男,辽宁沈阳人,教授,博士生导师,主要从事渗流流体力学和油气田开发研究.E-mail:weiyaook@sina.com.
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目“中国南方海相页岩气的高效开发的基础研究”(编号:2013CB228002)资助.

Effective stress characteristics in shale and its effect on productivity

Zhu Wei-yao,Ma Dong-xu
 
  

  1. School of Civil and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2017-12-14 Revised:2018-05-18 Online:2018-06-10 Published:2018-06-10

摘要:

应力作用对页岩气开发影响较大,研究有效应力特征对产能的影响具有重要意义。选取四川气田下志留统龙马溪组黑色页岩和层理页岩样品,运用扫描电镜技术对微观孔隙结构特征进行描述,采用Cross-plotting法对岩样的有效应力系数进行测量。实验结果表明,黑色页岩有效应力系数较小,平均为0.29。层理页岩有效应力系数平均为0.71,层理页岩中发育有微裂缝,孔隙压力对微裂缝发育岩样的渗透率影响更大。通过指数函数对有效应力与渗透率变化关系进行拟合,黑色页岩与层理页岩应力敏感常数分别为0.268MPa-1、0.355MPa-1,层理页岩应力敏感性更强。在实验研究基础上,建立了考虑应力作用和尺度效应影响的压裂水平井产能模型,利用“废弃压力法”对采收率进行评价,计算结果表明,微裂缝发育储层受应力作用影响较大,针对高产气井应该合理控制生产压差。改造区内压裂断块大小和断块内微裂缝发育程度对采出程度影响较大,针对微裂缝发育程度较低并且压裂断块较大的储层,应实施控压生产,以提高页岩气采出程度。

关键词: 页岩气, 微裂缝, 有效应力系数, 产能, 缝网

Abstract:

Research of effective stress characteristics on the productivity of shale gas has great significance.The samples of the black shale and bedding shale of the Lower Silurian Longmaxi Formation in Sichuan gas field are selected,the microscopic pore structure characteristics are described by scanning electron microscopy,effective stress coefficient is measured by the Cross-plotting method.The experimental results show that the effective stress coefficient of black shale is 0.29 on average and the bedding shale is 0.71.There are microfractures in bedding shale,pore pressure has greater influence on bedding shale.Fitting the relationship between effective stress and permeability by exponential function,the stress sensitivity constants of black shale and bedding shale are 0.268MPa-1and 0.355MPa-1.The stress sensitivity of bedding shale is stronger.On the basis of experiment,the productivity model of fractured horizontal well is established.The results show that microcrack developed reservoir is greatly influenced by the stress,the production pressure should be controlled properly for the high production well.The sizes of matrix block and microcrack have a great influence on the recovery.For the reservoirs with microcrack development and large blocks,bottom-hole pressure should be controlled to improve the recovery.

Key words: Shale gas, Micro-fracture, Effective stress coefficient, Productivity, Fracture network

中图分类号: 

  • TE132.2


[1]Warpinski N R,Teufel  L W.Determination of the Effective Stress Law for Permeability and Determination in Low-Permeability Rock[C].SPE20572,1992,7:123-131.
[2]Al-Wardy W,Zimmerman R W.Effectivestresslaw for the permeability of clay-rich sandstones[J].Journal of Geophysical Research,2004,109:B04203.[ZK)]
[3][ZK(3#]Ghabezloo S,Sulem J,Guédon S,et al.Effective stress law for the permeability of a limestone[J].International Journal of Rock Mechanics and Mining Sciences,2008,46:297-306.
[4]Bernabe Y.The effective pressure law for permeability in Chelmsford granite and Barre granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1986,23(3):267-275.
[5]Berryman J G.Effective stress for transport properties of inhomogeneous porous rock[J].Journal of Geophysical Research,1992,97(B12):17409-17424.
[6]Zoback M D,Byerlee J D.Permeability and effective stress[J].American Association of Petroleum Geologists Bulletin,1975,59(1):154-158.
[7]Zoback M D.High Pressure Deformation and Fluid flow in Sandstone,Granite and Granular Materials[D].Stanford,California,U.S.:Stanford University,1975.
[8]Kwon O,Kronenberg A K,Gangi A F,et al.Permeability of Wilcox shale and its effective pressure law[J].Journal of Geophysical research,2001,106:19339-19353.
[9]Reyes L,Ossanya S O.Empirical correlation of effective stress dependent shale rock properties[J].Journal of Canadian petroleum Technology,2002,27(12):47-53.
[10]Zhang Rui,Ning Zhengfu,Yang Feng,et al.experimental study on microscopic pore structure controls on shale permeability under compact process[J].Natural Gas Geoscience,2014,25(8):1284-1289.
张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289.
[11]Terzaghi K.The shearing resistance of saturated soils and the angle between the planes of shear[C].Proceedings of the  1st International Conference on Soil Mechanics and Foundation Engineering,Harvard University,1936,1:54-56.
[12]Guo Wei,Xiong Wei,Gao Shusheng.Experiment study on stress sensitivity of shale gas reservoirs[J].Special Gas Reservoirs,2012,19(1):95-97.
郭为,熊伟,高树生.页岩气藏应力敏感效应实验研究[J].特种油气藏,2012,19(1):95-97.
[13]Rob Heller,John Vermylen,Mark Zoback.Experimental Investigation of Matrix Permeability of Gas Shales[C].SPE Journal,2014,98:975-995.
[14]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structure in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报.2013,34(2):301-311.
[15]Deng Jia,Zhu Weiyao,Ma Qian,et al.Productivity prediction model of shale gas considering stress sensitivity[J].Natura Gas Geoscience,2013,24(3):456-460.
邓佳,朱维耀,马千,等.考虑应力敏感的页岩气产能预测模型[J].天然气地球科学,2013,24(3):456-460.
[16]Yin Congbin,Li Yanchao,Wang Subing,et al.Methodology of hydraulic fracture network prediction and its application[J].Natural Gas Industry,2017,37(4):60-68.
尹丛彬,李彦超,王素兵,等.页岩压裂裂缝网络预测方法及应用[J].天然气工业,2017,37(4):60-68.
[17]Mi Lidong,Jiang Hanqiao,Li Junjian,et al.Mathematical characterization of permeability in shale reservoir[J].Acta Petrolei Sinica,2014,35(5):928-934.
糜利栋,姜汉桥,李俊键,等.页岩储层渗透率数学表征[J].石油学报,2014,35(5):928-934.
[18]Cipolla C L,Lolon E P,Erdle J C,et al.Reservoir modeling in shale-gas reservoirs[J].SPE Reservoir Evaluation & Engineering,2013,13(4):638-653.
[19]Walsh J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(5):429-435.
[20]Song Zhiyong,Song Hongqing,Ma Dongxu,et al.Morphological characteristics of microscale fractures in gas shale and its pressure-dependent permeability[J].Interpretation,2017,5:SB25-SB31.
[21]Zhu Weiyao,Ma Dongxu,Zhu Huayin,et al.Stress sensitivity of shale gas reservoir and its influence on productivity[J].Natural Gas Geoscience,2016,27(5):892-897.
朱维耀,马东旭,朱华银,等.页岩储层应力敏感性及其对产能的影响[J].天然气地球科学,2016,27(5):892-897.
[22]Liang Chao,Jiang Zaixing,Yang Yiting,et al.Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation,Sichuan Basin[J].Petroleum Exploration and Developent,2012,39(6):691-698.
梁超,姜在兴,杨镱婷,等.四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J],石油勘探与开发,2012,39(6):691-698.
[22]Ma Tianshou,Chen Ping.Influence of  shale bedding plane on wellbore stability for horizontal wells[J].Journal of Southwest Petroleum University,2014,36(5):97-104.
马天寿,陈平.页岩层理对水平井井壁稳定的影响[J].西南石油大学学报,2014,36(5):97-104.
[23]Zhang Tao,Li Xiangfang,Wang Yonghui,et al.Study on the effect of gas-shale reservoir special properties on the fracturing fluid recovery efficiency and production performance[J].Natural Gas Geoscience,2017,28(6):828-838.
张涛,李相方,王永辉,等.页岩储层特殊性质对压裂液返排率和产能的影响[J].天然气地球科学,2017,28(6):828-838.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[4] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[5] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[6] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[7] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[8] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[9] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[10] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[11] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[12] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[13] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[14] 王延山, 胡英杰, 黄双泉, 康武江, 陈永成. 渤海湾盆地辽河坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1422-1432.
[15] 李跃林,赵晓波,王雯娟,白坤森,熊钰. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响——以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学, 2018, 29(1): 140-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓佳,朱维耀,刘锦霞,张贞,马千,张萌,邓凯,马丽. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学, 2013, 24(3): 456 -460 .
[2] 李凤杰,李磊,林洪,杨豫川,方朝刚,孟立娜. 鄂尔多斯盆地吴起地区侏罗系侵蚀古河油藏分布特征及控制因素[J]. 天然气地球科学, 2013, 24(6): 1109 -1117 .
[3] 陈文浩,王志章,潘潞,李汉林,侯加根. 致密砂岩储层流动单元定量识别方法探讨[J]. 天然气地球科学, 2016, 27(5): 844 -850 .
[4] 朱维耀,马东旭,朱华银,安来志,李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892 -897 .
[5] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828 -838 .
[6] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500 -509 .
[7] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085 -1093 .
[8] 刘琴琴,陈桂华,陈晓智,祝彦贺,杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094 -1101 .
[9] 李红哲,马峰,谢梅,杨巍,张成娟,王朴,赵健. 柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制#br# [J]. 天然气地球科学, 2018, 29(8): 1102 -1110 .
[10] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217 -1230 .