韦伯函数,页岩气,损伤力学,非均质性,水力压裂,有限元方法," /> 韦伯函数,页岩气,损伤力学,非均质性,水力压裂,有限元方法,"/> 页岩弹性模量非均质性对地应力及其损伤的影响

天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩弹性模量非均质性对地应力及其损伤的影响

汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露   

  1. 1.北京石油化工学院机械工程学院,深水油气管线关键技术与装备北京市重点实验室,北京 102617;
    2.北京航空航天大学航空科学与工程学院,北京 100083;
    3.中国石油大学(北京)非常规天然气研究院,北京 102249;
    4.中国石化石油工程技术研究院,北京 100101;
    5.中国石油天然气集团公司西南油气田分公司重庆气矿,重庆 400021
  • 收稿日期:2017-12-04 修回日期:2018-03-22 出版日期:2018-05-10 发布日期:2018-05-10
  • 通讯作者: 葛洪魁(1963-),男,山东武城人,教授,博士生导师,主要从事非常规储层钻完井与压裂改造机理研究. E-mail:gehongkui@163.com
  • 作者简介:汪道兵(1985-),男,安徽桐城人,讲师,博士,主要从事非常规储层水力压裂机理研究. E-mail:0546wdb@163.com.
  • 基金资助:
    北京市高水平创新团队建设计划项目(编号:IDHT20170507);国家重点基础研究发展计划(973)项目(编号: 2015CB250903);中国石油大学(北京)克拉玛依校区科研启动基金(编号:RCYJ2016B-01-001)联合资助.
     

Study of the influence of elastic modulus heterogeneity on in-situ stress and its damage in gas shale reservoirs

Wang Dao-bing,Ge Hong-kui,Yu Bo,Wen Dong-sheng,Zhou Jun,Han Dong-xu,Liu Lu   

  1. 1.School of Mechanical Engineering,Beijing Key Laboratory of Pipeline Critical Technology and Equipmentfor Deepwater Oil & Gas Development,Beijing Institute of Petrochemical Technology,Beijing 102617,China;
    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China;
    3.The Unconventional Natural Gas Institute,China University of Petroleum,Beijing 102249,China;
    4.SINOPEC Research Institute of Petroleum Engineering,Beijing 100101,China;
    5.Chongqing Gas Mine of Southwest Oil and Gas Field Branch,CNPC,Chongqing  400021,China
  • Received:2017-12-04 Revised:2018-03-22 Online:2018-05-10 Published:2018-05-10

摘要:

页岩的应力非均质性对钻完井、压裂改造和气藏开发动态等过程具有显著影响,目前未给出合理的表征方法来刻画页岩水力压裂过程中力学非均质性引起的岩石损伤/破裂及“应力阴影”效应。采用Galerkin有限元数值方法,通过COMSOL Multiphysics求解器,利用Matlab脚本语言进行了二次开发;采用Weibull概率密度函数表示页岩力学非均质性,数值模拟了水力压裂过程中流固耦合条件下非均质性对页岩地应力分布、应变能密度、流压和损伤因子等因素的影响规律。当地层完全为均质时,Von-Mises应力、应变能密度和损伤因子递减分布曲线特征明显,随着地层非均质增强,它们的分布曲线呈现起伏波动的规律,且Von-Mises应力、应变能密度与损伤因子相关性较好。据此提出了二维平面应变条件下力学非均质性引起的岩石损伤/破裂及“应力阴影”效应表征方法,即用单点线处的Von-Mises应力或应变能密度刻画岩石的局部破裂程度或应力阴影效应的强弱,用单位面积的平均应变能密度刻画岩石整体的破裂程度或应力阴影效应的强弱。该研究对进一步改进页岩体积压裂设计和提高气井产能具有重要指导意义。

 

关键词:

Abstract:

Shale heterogeneity has a significant effect on drilling and completions,hydraulic fracturing and hydrocarbon development performance,but it lacks representation of rock damage/failure caused by the mechanical heterogeneity and “stress shadow” effect during the hydraulic fracturing process.In this paper,Galerkin finite element method was adopted to numerically simulate the hydro-mechanical coupled interaction based on the solver in the COMSOL Multiphysics software and Matlab scripting development.The Weibull probability density function was used to represent the mechanical heterogeneity of gas shale.Under the condition of fully fluid-solid coupling during the fracking process,the effect of mechanical heterogeneity on von-Mises stress,strain energy density,damage factor and fluid pressure was numerically simulated in the gas shale wells.When the formation is completely homogeneous,their curves of von Mises stress,strain energy density and damage factor along a certain straight line showed obvious decreasing distribution.As the strata are heterogeneously enhanced,their distribution curves showed fluctuations,and von Mises stress and strain energy density respectively had a good relationship with damage factors.Accordingly,the method of rock damage/fracture and “stress shadow” effect caused by mechanic heterogeneity was put forward under the condition of 2D plane strain.That was to use,the von Mises stress or strain energy density at the single point or line to characterize the degree of local rupture or the shadow effect of stress,and the average strain energy density per unit area to characterize the degree of rupture of the rock or the intensity of the shadow effect.The study is of great significance to further improve the SRV fracturing design and the productivity of gas shale wells.

Key words: Weibull function, Shale gas, Damage mechanics, Heterogeneity, Hydraulic fracturing, Finite element method

中图分类号: 

  • TE357.1


[1]Zhu Wancheng,Wei Chenhui,Tian Jun,et al.Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application[J].Rock and Soil Mechanics,2009,30(12):3851-3857.
朱万成,魏晨慧,田军,等.岩石损伤过程中的热—流—力耦合模型及其应用初探[J].岩土力学,2009,30(12):3851-3857.
[2]Wei Chenhui.Damage Model for Coal and Rock Under Coupled Thermal-Hydraulic-Mechanical Conditions and Its Applications[D].Shenyang:Northeastern University,2012:13-36.
魏晨慧.热流固耦合条件下煤岩体损伤模型及其应用[D].沈阳:东北大学,2012:13-36.
[3]Lu Yinlong,Wang Lianguo.Numerical modeling of mining-induced fracturing and flow evolution in coal seam floor based on micro-crack growth[J].Journal of Mining & Safety Engineering,2015,32(6):889-897.
陆银龙,王连国.基于微裂纹演化的煤层底板损伤破裂与渗流演化过程数值模拟[J].采矿与安全工程学报,2015,32(6):889-897.
[4]Wang Yongliang,Zhuang Zhuo,Liu Zhanli,et al.Finite element analysis of transversely isotropic rock with mechanical-chemical-damage coupling[J].Engineering Mechanics,2016,30(1):105-113.
王永亮,庄茁,柳占立,等.横观各向同性岩石力学—化学—损伤耦合有限元分析[J].工程力学,2016,30(1):105-113.
[5]Mi Kaihua.Numerical Simulation of Meso-damage and Fracture of Full-graded Concrete[D].Kunming:Kunming University of Science and Technology,2015:78-79.
糜凯华.全级配混凝土细观损伤及断裂数值模拟研究[D].昆明:昆明理工大学,2015:78-79.
[6]Zhu W C,Tang C A.Micromechanical model for simulating the fracture process of rock[J].Rock Mechanics and Rock Engineering,2004,37(1):25-56.
[7]Wang J H,Elsworth D,Zhu W C,et al.The influence of fracturing fluids on fracturing processes:A comparison between gas and water[C]∥American Rock Mechanics Association.49th US Rock Mechanics/Geomechanics Symposium.California:American Rock Mechanics Association,2015:1-9.
[8]Lu Y L,Elsworth D,Wang L G.Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks[J].Computers and Geotechnics,2013,49:226-244.
[9]Pogacnik J,Elsworth D,O’Sullivan M,et al.A damage mechanics approach to the simulation of hydraulic fracturing/shearing around a geothermal injection well[J].Computers and Geotechnics,2016,71:338-351.
[10]Li X,Wang J H,Elsworth D.Stress redistribution and fracture propagation during restimulation of gas shale reservoirs[J].Journal of Petroleum Science and Engineering,2017,154:150-160.
[11]Wang Y,Liu Z,Yang H,et al.FE analysis of rock with hydraulic-mechanical coupling based on continuum damage evolution[J].Mathematical Problems in Engineering,2016,2016:1-9.
[12]Oh C S,Kim N H,Kim Y J,et al.A finite element ductile failure simulation method using stress-modified fracture strain model[J].Engineering Fracture Mechanics,2011,78(1):124-137.
[13]Gasch T,Ansell A.Cracking in quasi-brittle materials using isotropic damage mechanics[C]//Comsol.Proceedings of 2016 Comsol Conference.Munich:Comsol,2016:1-25.
[14]Wang Wendong,Zhao Guangyuan,Su Yuliang,et al.Application of network fracturing technology to tight oil reservoirs[J].Xinjiang Petroleum Geology,2013,34(3):345-348.
王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348.
[15]Wang Wendong,Su Yuliang,Mu Lijun,et al.Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(3):93-97.
王文东,苏玉亮,慕立俊,等.致密油藏直井体积压裂储层改造体积的影响因素[J].中国石油大学学报:自然科学版,2013,37(3):93-97.
[16]Zhang J,Zhu D,Hill A D.Water-induced damage to propped-fracture conductivity in shale formations[J].SPE Production & Operations,2016,31(2):147-156.
[17]Zhang J,Ouyang L,Zhu D,et al.Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in the shale reservoir[J].Journal of Petroleum Science and Engineering,2015,130:37-45.
[18]Zhang J,Zhu D,Hill A D.A new theoretical method to calculate shale fracture conductivity based on the population balance equation[J].Journal of Petroleum Science and Engineering,2015,134:40-48.
[19]Zhang J,Kamenov A,Zhu D,et al.Measurement of realistic fracture conductivity in the Barnett shale[J].Journal of Unconventional Oil and Gas Resources,2015,11(11):44-52.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[10] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[11] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[12] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[13] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[14] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[15] 王延山, 胡英杰, 黄双泉, 康武江, 陈永成. 渤海湾盆地辽河坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1422-1432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!