天然气地球科学

• 天然气开发 • 上一篇    下一篇

致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例

黄禹忠,刁素,栗铁峰,何红梅   

  1. 中国石化西南油气分公司石油工程技术研究院,四川 德阳 618000
  • 收稿日期:2017-10-16 修回日期:2018-02-21 出版日期:2018-04-10 发布日期:2018-04-10
  • 作者简介:黄禹忠 (1972-),男,四川荣县人,高级工程师,硕士,主要从事储层改造设计、研究及现场工作.E-mail:huangyuzhong@126.com.
  • 基金资助:

    国家科技重大专项“大型油气田及煤层气开发”(编号:2016ZX05048)子课题“薄层窄河道致密砂岩气藏水平井压裂关键技术”(编号:2016ZX05048004-003)资助.

Harm and countermeasure of tight sandstone gas reservoir fracturing:A case study of ZH structure JS1gas reservoir,Western Sichuan Depression

Huang Yu-zhong,Diao Su,Li Tie-feng,He Hong-mei   

  1. Petroleum Engineering Technology Research Institute,Southwest Oil & Gas Branch Company,SINOPEC,Deyang 618000,China
  • Received:2017-10-16 Revised:2018-02-21 Online:2018-04-10 Published:2018-04-10

摘要:

为提高致密砂岩气藏压后效果,以四川盆地川西坳陷ZH构造沙溪庙组JS12气藏为例,采用电镜扫描、恒速压汞等实验方法研究了储层微观结构,评价了储层敏感性及水锁伤害。该气藏黏土矿物含量高(平均为14.4%),易于膨胀和运移的伊/蒙混层和伊利石占比大;平均孔喉半径值为0.26μm,连通性不佳,且束缚水饱和度高。储层具有强水敏、易水锁的特征。盐敏实验表明压裂液矿化度低于22 500mg/L会产生盐敏伤害,调整防膨剂加量,压裂液伤害率从39.5%下降至28.5%。对比了前期压裂液与防膨降水锁压裂液体系在束缚水饱和度下的水锁伤害,伤害率从58%降至42%,气驱岩心24h,渗透率恢复率达75.5%(前期配方仅为22.7%)。针对该类储层,提出了少液量、全程液氮伴注降滤助排、提高返排压差的压裂液快进快出工艺对策。针对性压裂液体系及工艺措施在JS203-3HF和JS203-4HF 2口水平井应用,压后分别在油压16.2MPa、19.8MPa下获测试天然气产量17.1×104m3/d、20.760 8×104m3/d(同河道邻井压后油压16.3MPa下测试气产量仅为3.845 8×104m3/d),远超地质预期。研究为高效开发该气藏提供了技术支撑。

关键词: 致密砂岩气藏, 强水敏, 水锁, 工艺对策, 现场应用

Abstract:

In order to improve the post-compression effect of tight sandstone gas reservoirs,taking Shaxi Temple Formation JS12 gas reservoir in the ZH structure of Western Sichuan Depression as an example,the microstructure of the reservoir is studied by means of electron microscopy and constant speed mercury pressure testing,and the sensitivity of the reservoir and the damage of water lock are evaluated.The gas reservoir has the advantages of easy expansion and migration,because of high content of clay (average 14.4%),illite mixed layer and illite.The average pore throat radius of the reservoir is 0.26 micron,and the connectivity is poor and the irreducible water saturation is high.The reservoir is characterized by strong water sensitivity and easy water locking.The salinity of fracture fluid is less than  22 500mg/L,which can cause salt sensitive damage.The damage rate of fracturing fluid can be reduced from 39.5% to 28.5%.The water lock damage of the pre-fracturing fluid and the anti-expansion precipitation lock fracturing fluid system under the bound water saturation is compared,and the damage rate is reduced from 58% to 42%,and the recovery rate of 24h permeability of the gas drive core is 75.5% (prophase formula only 22.7%).The countermeasures of fast fracturing and quick release of fracturing fluid are put forward,including the use of less liquid volume,the whole liquid nitrogen injection,the drainage aid and the improvement of flow back pressure.This set of fracturing fluid system and technological measures have been applied in JS203-3HF and JS203-4HF two horizontal wells,with test production of 17.1×104m3/d  and 20.760 8×104m3/d  at 19.8MPa and 16.2MPa,respectively(with hydraulic pressure in the hydraulic channel of adjacent well gas test production of 3.845 8×104m3/d  in 16.3MPa),far exceeding the expectations of geology.The research results had provided technical support for the high efficient development of the gas reservoir.

Key words: Dense sandstone gas reservoir, Strong water sensitivity, Water locking, Technological countermeasures, Field application

中图分类号: 

  • TE357

[1]Liao Jijia,Tang Hongming,Zhu Xiaomin,et al.Water sensitivity experiment and damage mechanism of sandstone reservoirs with ultra-low permeability:A case study of the eighth oil layer in the Yanehang Formation of Xifeng Oilfield,Ordos Basin[J].Oil & Gas Geology,2012,33(2):321-323.
廖纪佳,唐洪明,朱筱敏,等.特低渗透砂岩储层水敏实验及损害机理研究——以鄂尔多斯盆地西峰油田延长组第8油层为例[J].石油与天然气地质,2012,33(2):321-323.
[2]Nie Fajian,Tian Wei,Li Zhongchao,et al.Water locking damage of tight sandstone gas reservoir and its influence on productivity[J].Science Technology and Engineering,2016,16(18):30-35.
聂法健,田巍,李中超,等.致密砂岩气藏水锁伤害及对产能的影响[J].科学技术与工程,2016,16(18):30-35.
[3]Yang Yongli.Study of water locking damage and mechanism and water unlocking permeability reservoir[J].Journal of Southwest Petroleum University:Science and Technology Edition,2013,35(3):137-141.
杨永利.低渗透油藏水锁伤害机理及解水锁实验研究[J].西南石油大学学报:自然科学版,2013,35(3):137-141.
[4]Zhao Chunpeng,Li Wenhua,Zhang Yi,et al.Damage mechanism  and prevention methods analysis of low permeability gas reservoir  water blocking[J].Fault-Block Oil & Gas Field,2004,11(3):45-46.
赵春鹏,李文华,张益,等.低渗气藏水锁伤害机理与防治措施分析[J].断块油气田,2004;11(3):45-46.
[5]Wang Minglei,Zhang Sui’an,Guan Hui,et al.Relationship between characteristics of tight oil reservoirs fracturing fluid damage:A case from Chang 7 member of the Triassic Yanchang Formation in Ordos Basin[J].Oil & Gas Geology,2015,36(5):848-854.
王明磊,张遂安,关辉,等.致密油储层特点与压裂液伤害的关系——以鄂尔多斯盆地三叠系延长组长7段为例[J].石油与天然气地质,2015,36(5):848-854.
[6]Liu Zixiong,Wu Ying,Li Jingsong,et al.The study on water-blocking damage radius of gas wells with low permeability[J].Science Technology and Engineering,2015,15(7):177-180.
刘子雄,吴英,李敬松,等.低渗气井水锁伤害半径研究[J].科学技术与工程,2015,15(7):l77-l80.
[7]Meng Qingfeng.The experiment of water lock effect for low pernmability reservoir[J].Oil-Gas Field Surface Engineering,2012,31(8):25-26.
孟庆峰.低渗透储层水锁效应试验[J].油气田地面工程,2012,31(8):25-26.
[8]Fedorov A,Carrasquilla J,Cox A.Avoiding damage associated to produced water use in hydraulic fracturing[C]//SPE  International Symposium and Exhibition on Formation Damage Contro1.Society of Petroleum Engineers,2014.
[9]Diao Su,Ren Shan,Huang Yuzhong,et al.A pilot test of high efficiency flowback technology for fractured wells in western Sichuan[J].Natural Gas Industry,2008,28(9):89-91.
刁素,任山,黄禹忠,等.压裂井高效返排新技术在川西地区的先导性试验[J].天然气工业,2008,28(9):89-91.
[10]Ren Shan,Ci Jianfa.Study on fracture closure and flowback optimization of fractured wells considering dynamic filtration coefficient[J].Journal of China University of Petroleum:Natural Science Edition,2011,35(3):103-107,114.
任山,慈建发.考虑动态滤失系数的压裂井裂缝闭合及返排优化研究[J].中国石油大学学报:自然科学版,2011,35(3):103-107,114.

[1] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[2] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[3] 杨旭,孟英峰,李皋,曾辉. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812-818.
[4] 黄禹忠,刁素,尹琅,栗铁峰,刘琦. 致密砂岩气藏水平井细分段适应性分析[J]. 天然气地球科学, 2017, 28(3): 460-465.
[5] 盛军,孙卫,段宝虹,刘艳妮,张弢,曹雷. 致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J]. 天然气地球科学, 2015, 26(10): 1972-1978.
[6] 李奇,高树生,杨朝蓬,冯全乐,叶礼友. 致密砂岩气藏阈压梯度对采收率的影响[J]. 天然气地球科学, 2014, 25(9): 1442-1450.
[7] 胡勇,李熙喆,卢祥国,焦春艳,王庆生,朱秋林. 高含水致密砂岩气藏储层与水作用机理[J]. 天然气地球科学, 2014, 25(7): 1072-1076.
[8] 徐梦雅,冉启全,李宁,沈冠中. 应力敏感性致密气藏压裂井动态反演新方法[J]. 天然气地球科学, 2014, 25(12): 2058-2064.
[9] 刘向君,熊健,梁利喜,罗超,张安东. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652.
[10] 费世祥,王东旭,林刚,潘晓丽,王勇,张保国,徐运动,刘雪玲. 致密砂岩气藏水平井整体开发关键地质技术——以苏里格气田苏东南区为例[J]. 天然气地球科学, 2014, 25(10): 1620-1629.
[11] 王少飞,安文宏,陈鹏,刘道天,梁鸿军. 苏里格气田致密气藏特征与开发技术[J]. 天然气地球科学, 2013, 24(1): 138-145.
[12] 胡林楠,赵靖舟. 致密砂岩气藏有效厚度确定方法及应用探讨[J]. 天然气地球科学, 2013, 24(1): 69-77.
[13] 游利军,李雷,康毅力,石玉江,张海涛,杨小明. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764-769.
[14] 谢晓永,郭新江,蒋祖军,孟英峰,康毅力. 储层孔隙结构分形特征与损害研究[J]. 天然气地球科学, 2011, 22(6): 1128-1132.
[15] 赵靖舟, 王力, 孙兵华, 白玉彬, 吴伟涛. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学, 2010, 21(6): 875-881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!